Aurophilic Molecules on Surfaces. Part I. (NapNC)AuCl on Au(110).

ACS Omega

Institute of Experimental Physics, Surface Science Division, Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria.

Published: August 2023

Aurophilicity is a well-known phenomenon in structural gold chemistry and is found in many crystals of Au(I) complexes. However, these attractive dispersion forces between and within complexes containing Au(I) moieties have not been well studied in ultrathin films. In this paper, we elucidate the interaction of chlorido(2-naphthyl isonitrile)gold(I) on and with Au(110) surfaces. Already during physical vapor deposition, the condensation of ultrathin films is monitored by photoelectron emission microscopy (PEEM) and by incremental and spectrally resolved changes in the optical reflectance (DDRS). Additional structural data obtained by STM and LEED reveal that the "crossed swords" packing motif known from the bulk is also present in thin films. The molecular arrangement changes several times during thin-film deposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448646PMC
http://dx.doi.org/10.1021/acsomega.3c02473DOI Listing

Publication Analysis

Top Keywords

ultrathin films
8
aurophilic molecules
4
molecules surfaces
4
surfaces napncaucl
4
napncaucl au110
4
au110 aurophilicity
4
aurophilicity well-known
4
well-known phenomenon
4
phenomenon structural
4
structural gold
4

Similar Publications

Ultrathin Rare-Earth Oxyhalides as High-κ van der Waals Layered Dielectrics.

Adv Mater

January 2025

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Van der Waals (vdW) dielectrics are extensively employed to enhance the performance of 2D electronic devices. However, current vdW dielectric materials still encounter challenges such as low dielectric constant (κ) and difficulties in synthesizing high-quality single crystals. 2D rare-earth oxyhalides (REOXs) with exceptional electrical properties present an opportunity for the exploration of novel high-κ dielectrics.

View Article and Find Full Text PDF

We have proposed and developed a method for measuring the thermal conductivity of highly efficient thermal conductors. The measurement method was tested on pure metals with high thermal conductivity coefficients: aluminum (99.999 wt.

View Article and Find Full Text PDF

Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.

View Article and Find Full Text PDF

Desired Color Diversity of Carbon Fiber with Excellent Environmental Super-Durability and Remarkable Flame Retardancy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.

Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.

View Article and Find Full Text PDF

For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!