Silicon nitride, silicon oxide, and silicon oxynitride thin films were deposited on the Si substrate by inductively coupled plasma chemical vapor deposition and annealed at 1100 °C for 3 min in an Ar environment. Silicon nitride and silicon oxide films deposited at ratios of the reactant flow rates of SiH/N = 1.875 and SiH/NO = 3, respectively, were Si-rich, while Si excess for the oxynitride film (SiH/N/NO = 3:2:2) was not found. Annealing resulted in a thickness decrease and structural transformation for SiO and SiN films. Nanocrystalline phases of Si as well as α- and β-SiN were found in the annealed silicon nitride film. Compared to oxide and nitride films, the oxynitride film is the least susceptible to change during annealing. The relationship between the structure, composition, and optical properties of the Si-based films has been revealed. It has been shown that the calculated optical parameters (refractive index, extinction coefficient) reflect structural peculiarities of the as-deposited and annealed films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448691 | PMC |
http://dx.doi.org/10.1021/acsomega.3c04997 | DOI Listing |
We present both experimental and simulation results for a fully etched, C-band GC fabricated in an 800 nm silicon nitride platform that significantly reduces backreflections. They are minimized by truncating the initial grates, which deflect reflected light at an oblique angle and excite higher-order modes in the tapered waveguide that is filtered out. Insertion losses resulting from this modification of the grating coupler are mitigated by an adaptive redesign of the grates that corrects incurred errors in the generated phase front.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, The American University in Cairo, New Cairo, 11835, Egypt.
Inverse design with topology optimization considers a promising methodology for discovering new optimized photonic structure that enables to break the limitations of the forward or the traditional design especially for the meta-structure. This work presents a high efficiency mid infra-red imaging photonics element along mid infra-red wavelengths band starts from 2 to 5 µm based on silicon nitride optimized material structures. The first two designs are broadband focusing and reflective meta-lens under very high numerical aperture condition (NA = 0.
View Article and Find Full Text PDFExtracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFMolecules
January 2025
School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
RSC Adv
January 2025
Institute of Advanced Structure Technology, Beijing Institute of Technology Beijing 100081 China
SiN ceramic has received great attention because of its sound biological performances, which make it an attractive ceramic implant material in healthcare, particularly in orthopedic surgery. With the advancement of 3D printing technology, SiN ceramics can now be fabricated into customized implants with precise anatomical shapes, sizes, and microstructures, catering to the individual needs of patients. We, therefore, conducted a comprehensive review of how 3D printing enables complex-shaped SiN ceramic implants for clinical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!