ACS Omega
Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
Published: August 2023
Lanthanide (Ln)-doped upconversion (UC) phosphors converting near-infrared (NIR) light to visible light hold very high promise toward biomedical applications. The scientific findings on luminescent thermometers revealed their superiority for noninvasive thermal sensing. However, only few reports showcase their potential for applications in extreme conditions (temperatures below -70 °C) restricted by low thermal sensitivity. Here, we demonstrate the tailoring of luminescence properties via introducing Ho-Mn energy transfer (ET) routes with judicious codoping of Mn ions in ZnAlO/Ho,Yb phosphor. Preferentially, a singular red UC emission is required to improve the bioimaging sensitivity and minimize tissue damage. We could attain UC emission with 94% red component by a two-photon UC process. Higher temperature annealing brings the color coordinates to the green domain, highlighting the potential for color-tunable luminescence switch. Moreover, this work investigates the thermometric properties of ZnAlO/Yb, Ho in the range of 80-300 K and influence of inducing extra ET pathways by Mn codoping. Interestingly, the luminescence intensities for nonthermally coupled (F,S) and the F radiative transitions of Ho ions display opposite behavior at 80 and 300 K, which revealed competition between temperature-sensitive decay pathways. The codoping of Mn ions is fruitful in causing a fourfold increase of absolute sensitivity. Notably, the color tunability from green through yellow to red is helpful in rough temperature estimation by naked eyes. The maximum relative () and absolute sensitivities () were estimated to be 1.89% K (140 K) and 0.0734 K (300 K), respectively. Even at 80 K, a of 0.00447 K and of 0.6025% K were achievable in our case, which are higher than most of the other Ln-based systems. The above-mentioned results demonstrate the potential of ZnAlO/Yb,Ho for cryogenic optical thermometry and a strategy to design new Ln-based UC thermometers by taking advantage of ET routes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448494 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03629 | DOI Listing |
Chem Sci
January 2025
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.
The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.
View Article and Find Full Text PDFACS Cent Sci
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.
View Article and Find Full Text PDFACS Omega
January 2025
Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Wuhan 430063, China.
Wearable thermoelectric generator (TEG) can collect human body heat and convert it into electrical energy, achieving self-powering of the device and thus becoming a hot research topic at present. By utilization of three-dimensional spiral thin-film thermoelectric structures and passive radiation cooling methods, the heat transfer area can be increased and power generation can be enhanced. In order to study the effect of outdoor radiation cooling on the thermoelectric performance of spiral heating, as well as the TEG performance output under different external environments and circuit loads, this paper proposes a new three-dimensional coupled numerical model of the spiral thermoelectric wristband system with multiple physical fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.