Unlabelled: Only 13% of head and neck cancer (HNC) patients respond to cetuximab therapy despite its target (EGFR) is expressed in about 80-90% of HNC patients. However, this problem remained unresolved till date despite of numerous efforts. Thus, the current study aimed to establish hub genes involved in cetuximab resistance via series of bioinformatics approach. The GSE21483 dataset was analysed for differentially expressed genes (DEGs) using GEO2R and enrichment analysis was carried out using DAVID. STRING 11.5 and Cytoscape 3.7.2 were used for protein-protein interactions and hub genes respectively. The significant hub genes ( < 0.05) were validated using ULCAN and Human protein atlas. Validated genes were further queried for tumor infiltration using TIMER2.0. Out of total 307 DEGs, 38 hub genes were identified of which and were the significant hub genes associated with both mRNA expression and overall survival. and were found to be downregulated whereas and were found to be upregulated in our study. However, using UALCAN, we found that high expression of negatively affects overall survival whereas high expression of and positively affects overall survival. Protein level for and expression was significant in tumor HNC tissue as compared to normal HNC tissue. was found to be a key regulator of CTX resistance among HNC patients. Targeting and associated PPI circuits might improve the response rate to CTX. Thus, EFNB2 has potential to be theranostic marker for CTX resistance.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-023-03739-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447808 | PMC |
http://dx.doi.org/10.1007/s12070-023-03739-9 | DOI Listing |
J Cardiothorac Surg
January 2025
Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China.
Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.
View Article and Find Full Text PDFNat Med
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China. Electronic address:
Nutritional modification strategies have become pivotal in addressing heat stress in poultry farming. Probiotics are increasingly recognized as a sustainable additive by researchers. The enhancement of antioxidant capacity is critical for improving the overall health and productivity of broilers.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
Abdominal aortic aneurysm (AAA) is the most prevalent dilated arterial aneurysm that poses a significant threat to older adults, but the molecular mechanisms linking senescence to AAA progression remain poorly understood. This study aims to identify cellular senescence-related genes (SRGs) implicated in AAA development and assess their potential as therapeutic targets. Four hundred and twenty-nine differentially expressed genes (DEGs) were identified from the GSE57691 training set, and 867 SRGs were obtained.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!