Hemp ( L.) is a widely researched industrial crop with a variety of applications in the pharmaceutical, nutraceutical, food, cosmetic, textile, and materials industries. Although many of these applications are related to its chemical composition, the chemical diversity of the hemp metabolome has not been explored in detail and new metabolites with unknown properties are likely to be discovered. In the current study, we explored the chemical diversity of the hemp seed metabolome through an untargeted metabolomic study of 52 germplasm accessions to 1) identify new metabolites and 2) link the presence of biologically important molecules to specific accessions on which to focus on in future studies. Multivariate analysis of mass spectral data demonstrated large variability of the polar chemistry profile between accessions. Five main groups were annotated based on their similar metabolic fingerprints. The investigation also led to the discovery of a new compound and four structural analogues, belonging to a previously unknown chemical class in hemp seeds: cinnamic acid glycosyl sulphates. Although variability in the fatty acid profiles was not as marked as the polar components, some accessions had a higher yield of fatty acids, and variation in the ratio of linoleic acid to α-linolenic acid was also observed, with some varieties closer to 3:1 (reported as optimal for human nutrition). We found that that cinnamic acid amides and lignanamides, the main chemical classes of bioactive metabolites in hemp seed, were more concentrated in the Spanish accession Kongo Hanf (CAN58) and the French accession CAN37, while the Italian cultivar Eletta Campana (CAN48) demonstrated the greatest yield of fatty acids. Our results indicate that the high variability of bioactive and novel metabolites across the studied hemp seed accessions may influence claims associated with their commercialization and inform breeding programs in cultivar development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449600PMC
http://dx.doi.org/10.3389/fpls.2023.1114398DOI Listing

Publication Analysis

Top Keywords

hemp seed
16
chemical diversity
12
diversity hemp
12
hemp
8
seed metabolome
8
cinnamic acid
8
yield fatty
8
fatty acids
8
chemical
5
accessions
5

Similar Publications

Medicinal Cannabis and the Intestinal Microbiome.

Pharmaceuticals (Basel)

December 2024

Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.

Historically, the multiple uses of cannabis as a medicine, food, and for recreational purposes as a psychoactive drug span several centuries. The various components of the plant (i.e.

View Article and Find Full Text PDF

This study explores the potential use of mould biomass and waste fibres for the production of agrotextiles. First, 20 mould strains were screened for efficient mycelium growth, with optimized conditions of temperature, sources of carbon and nitrogen in the medium, and type of culture (submerged or surface). A method was developed for creating a biocomposite based on the mould mycelium, reinforced with commercial bleached softwood kraft (BSK) pulp and fibre additives (cotton, hemp).

View Article and Find Full Text PDF

Biopeptide-rich fermented hemp seeds: Boosting anti-inflammatory and immune responses through Lactiplantibacillus plantarum probiotic fermentation.

Int J Biol Macromol

December 2024

Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Future F Biotech Co., Ltd, Chuncheon 24341, South Korea. Electronic address:

Article Synopsis
  • Hemp seeds are shown to have anti-inflammatory and immunological benefits, and fermentation with Lactiplantibacillus plantarum enhances these properties.
  • The study found that fermented hemp seed extracts significantly inhibited inflammatory cytokines more effectively than unfermented seeds, indicating a boost of 25% to 39.3% in their effects.
  • Metabolomic analysis identified novel bioactive compounds linked to these enhanced effects, suggesting fermented hemp seeds could be developed into functional food ingredients for health and wellness applications.
View Article and Find Full Text PDF

The margarine market is growing globally due to its lower cost, ease of availability, large-scale commercialization, and expanding market in the bakery and confectionary industries. Butter contains greater amounts of saturated fat and has been associated with cardiovascular diseases. The trans fats generated through the hydrogenation process have several adverse impacts on human health, such as the risk of atherosclerosis, coronary heart disease, postmenopausal breast cancer, vision and neurological system impairment, type II diabetes, and obesity.

View Article and Find Full Text PDF

Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of this work was to evaluate which material/temperature/light solutions better preserve HSO quality during its shelf life and to test NIR as a rapid, non-destructive technique for monitoring oxidation phenomena. Futura 75 hemp seeds were cold-pressed; the oil was packed into 20 mL vials of four different materials (polypropylene, clear glass, amber glass, and amber glass coated with aluminum foil) and stored for 270 days at 25 °C under diffused light and at 10 °C in dark conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!