Multifunctional electrocatalysts are crucial to cost-effective electrochemical energy conversion and storage systems requiring mutual enhancement of disparate reactions. Embedding noble metal nanoparticles in 2D metal-organic frameworks (MOFs) are proposed as an effective strategy, however, the hybrids usually suffer from poor electrochemical performance and electrical conductivity in operating conditions. Herein, ultrafine Pt nanoparticles strongly anchored on thiophenedicarboxylate acid based 2D Fe-MOF nanobelt arrays (Pt@Fe-MOF) are fabricated, allowing sufficient exposure of active sites with superior trifunctional electrocatalytic activity for hydrogen evolution, oxygen evolution, and oxygen reduction reactions. The interfacial Fe─O─Pt bonds can induce the charge redistribution of metal centers, leading to the optimization of adsorption energy for reaction intermediates, while the dispersibility of ultrafine Pt nanoparticles contributes to the high mass activity. When Pt@Fe-MOF is used as bifunctional catalysts for water-splitting, a low voltage of 1.65 V is required at 100 mA cm with long-term stability for 20 h at temperatures (65 °C) relevant for industrial applications, outperforming commercial benchmarks. Furthermore, liquid Zn-air batteries with Pt@Fe-MOF in cathodes deliver high open-circuit voltages (1.397 V) and decent cycling stability, which motivates the fabrication of flexible quasisolid-state rechargeable Zn-air batteries with remarkable performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202305201 | DOI Listing |
Nanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA.
Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.
Nanoporous solids offer a wide range of functionalities for industrial, environmental, and energy applications. However, only a limited number of porous materials are responsive, the nanopore dynamically alters its size and shape in response to external stimuli such as temperature, pressure, light or the presence of specific molecular stimuli adsorbed inside the voids deforming the framework. Adsorption-induced structural deformation of porous solids can result in unique counterintuitive phenomena.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
Investigating the impact of heteroatom alloying extents on regulating the cluster structures is crucial for the fabrication of cluster-based nanomaterials with customized properties. Herein, two structurally comparable PdAu ( = 1, 2) nanoclusters with a uniform surface environment but completely distinct kernel configurations were controllably synthesized and structurally determined. The single Pd-alloyed Pd1Au12 nanocluster retained an icosahedral metal framework, while the Pd2Au12 nanocluster with two Pd heteroatoms exhibited a unique toroidal configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!