CT-based radiomics analysis of peri intracerebral hemorrhage edema: A new tool to predict functional outcome.

Diagn Interv Imaging

Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; Department of Clinical Sciences, Diagnostic Radiology, Lund University, Skåne University Hospital, 221 84, Lund, Sweden.

Published: September 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diii.2023.06.002DOI Listing

Publication Analysis

Top Keywords

ct-based radiomics
4
radiomics analysis
4
analysis peri
4
peri intracerebral
4
intracerebral hemorrhage
4
hemorrhage edema
4
edema tool
4
tool predict
4
predict functional
4
functional outcome
4

Similar Publications

Purpose: We hypothesised that applying radiomics to [F]PSMA-1007 PET/CT images could help distinguish Unspecific Bone Uptakes (UBUs) from bone metastases in prostate cancer (PCa) patients. We compared the performance of radiomic features to human visual interpretation.

Materials And Methods: We retrospectively analysed 102 hormone-sensitive PCa patients who underwent [F]PSMA-1007 PET/CT and exhibited at least one focal bone uptake with known clinical follow-up (reference standard).

View Article and Find Full Text PDF

Prediction of Radiation Therapy Induced Cardiovascular Toxicity from Pretreatment CT Images in Patients with Thoracic Malignancy via an Optimal Biomarker Approach.

Acad Radiol

January 2025

Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.). Electronic address:

Rationale And Objectives: Cardiovascular toxicity is a well-known complication of thoracic radiation therapy (RT), leading to increased morbidity and mortality, but existing techniques to predict cardiovascular toxicity have limitations. Predictive biomarkers of cardiovascular toxicity may help to maximize patient outcomes.

Methods: The machine learning optimal biomarker (OBM) method was employed to predict development of cardiotoxicity (based on serial echocardiographic measurements of left ventricular ejection fraction and longitudinal strain) from computed tomography (CT) images in patients with thoracic malignancy undergoing RT.

View Article and Find Full Text PDF

Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.

Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).

View Article and Find Full Text PDF

Introduction: This study predicted HRD score and status based on intra- and peritumoral radiomics in patients with ovarian cancer (OC) for better guiding the use of PARPi in clinical.

Methods: A total of 106 and 95 patients with OC were included between January 2022 and November 2023 for predicting HRD score and status, respectively. Radiomics features were extracted and quantitatively analyzed from intra- and peri-tumor regions in the CT image.

View Article and Find Full Text PDF

Purpose: To develop and validate a radiomics nomogram model for predicting the micropapillary pattern (MPP) in lung adenocarcinoma (LUAD) tumors of ≤2 cm in size.

Methods: In this study, 300 LUAD patients from our institution were randomly divided into the training cohort (n = 210) and an internal validation cohort (n = 90) at a ratio of 7:3, besides, we selected 65 patients from another hospital as the external validation cohort. The region of interest of the tumor was delineated on the computed tomography (CT) images, and radiomics features were extracted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!