Background And Purpose: The paper observes regulation of the expression levels of NLRP3 and TLR4 in hippocampal CA1 neurons in CUMS mice by aerobic exercise with constructing CUMS depression mouse model, in order to explore the neuroprotective mechanism of aerobic exercise on the hippocampus of depressed mice.

Study Design And Method: 24 healthy male 8-week-old C57BL/6 mice were randomly divided into CG, MG and ME. Thirteen stress-stimulating factors were randomly formulated into a CUMS stress-stimulating program. The mice were underwent 28 days of CUMS depression model, referenced clinical means for experimental research. The study was approved by the Ethics Committee of Yichun University (YCUEC IRB number LSK NO.2022.18). After model preparation, ME mice were subjected to moderate-intensity treadmill exercise training for 8 weeks. TST, FST and SPT were used to detect the depression-like behaviors of the mice in each group. Nissl staining was used to compare the cell morphology in the CA1 region of the mouse hippocampus. Immunohistochemical staining and western blot were used to detect the changes in the expression levels of NLRP3, TLR4 and other proteins in the CA1 region of the mouse hippocampus.

Results: The results of neurobehavioral assessment showed that, the immobility time of TST and FST were significantly increased, and SPT index was significantly decreased of MG mice. Compared with MG, ME mice significantly improved depression-like behaviors such as TST, FST and SPT index. Nissl staining showed that the morphology of neurons in CA1 region of hippocampus of MG mice were mostly vacuolar-like, with severe nuclear pyknosis. Abnormal morphological changes such as vacuolar-like and pyknotic pyknosis of neurons in the hippocampal CA1 region of ME mice were significantly reduced. Protein expression test showed that the number of NLRP3, TLR4, IL-1β and IL-10 positive neurons in hippocampal CA1 region of MG mice increased significantly compared with CG, and the proportion of positive cells increased significantly, while NLRP3 and TLR4 positive neurons in the hippocampal CA1 region of ME mice were significantly reduced, the proportion of TLR4 positive cells was significantly reduced.

Conclusion: Systematic moderate-intensity exercise can effectively improve the depression-like behavior of CUMS depressed mice through the expression of TLR4/NLRP3 inflammatory signaling pathway, and provide an effective experimental basis for the clinical rehabilitation treatment of depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2023.08.078DOI Listing

Publication Analysis

Top Keywords

ca1 region
28
nlrp3 tlr4
16
hippocampal ca1
16
mice
13
aerobic exercise
12
tst fst
12
neurons hippocampal
12
region mice
12
depression-like behavior
8
ca1
8

Similar Publications

This brief report aimed to investigate the optical absorbance spectra of normal, dysplastic, and malignant epithelial cell lines under normal and nutritional stress conditions. HaCAT (keratinocyte), DOK (oral dysplastic), and oral squamous cell carcinoma (OSCC) cell lines (CA1, Luc4, SCC9) were evaluated regarding their optical absorbance after culture with 0-10% fetal bovine serum. Absorbance measurements indicated that HaCAT under serum starvation exhibited higher absorbance at blue (430 nm) and near-infrared (906 nm) wavelengths.

View Article and Find Full Text PDF

The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).

View Article and Find Full Text PDF

Memory consolidation from a reinforcement learning perspective.

Front Comput Neurosci

January 2025

Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.

Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns.

View Article and Find Full Text PDF

Electroacupuncture effects on trigeminal neuralgia with comorbid anxiety and depression: The role of frequency and acupoint specificity.

FASEB J

January 2025

Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

This study aimed to investigate the effects of electroacupuncture (EA) at specific acupoints (DU20 and ST36) and different frequencies (2 and 100 Hz) on brain regions associated with trigeminal neuralgia, anxiety, and depression. Chronic trigeminal neuralgia was induced by the chronic constriction of the infraorbital nerve (CION). Anxiety and depression were assessed through behavioral tests.

View Article and Find Full Text PDF

To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!