Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase.

Int J Biol Macromol

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Published: December 2023

Hyperuricemia is characterized by elevated uric acid (UA) level in the body. The xanthine oxidase (XO) inhibitory ability is an important way to evaluate the anti-hyperuricemia effect of natural products. Ferulic acid (FA) is a phenolic acid compound, and it is a free radical scavenger with many physiological functions. The aim of this study was to investigate the structure-activity relationship, potential mechanism and interaction of FA as XO's inhibitor. In the cell experiment, using 1.25 mM adenosine to incubate for 24 h under the optimal conditions (37 °C, pH = 7.2) can increase the UA production by 1.34 folds. PCR analysis showed that FA could reduce the mRNA expression level of XO. FA inhibited XO in a mixed mode (IC = 13.25 μM). The fluorescence quenching of XO by FA occurs through a static mechanism, with an inhibition constant of K = 9.527 × 10 mol L and an apparent coefficient of α = 1.768. The enthalpy and entropy changes were found as -267.79 KJ mol and - 860.85 KJ mol, indicating that both hydrogen binding and hydrophobic are involved in the interaction of this polyphenolic natural compound with XO. Thus, FA supplementation may be a potential therapeutic strategy to improve hyperuricemia by reducing UA production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126542DOI Listing

Publication Analysis

Top Keywords

ferulic acid
8
xanthine oxidase
8
acid ameliorates
4
ameliorates hyperuricemia
4
hyperuricemia regulating
4
regulating xanthine
4
oxidase hyperuricemia
4
hyperuricemia characterized
4
characterized elevated
4
elevated uric
4

Similar Publications

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.

View Article and Find Full Text PDF

Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.

View Article and Find Full Text PDF

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

The development of multitargeted drugs is urgent for ischemic stroke. TRPV1 and TRPM8 are important targets of ischemic stroke. Previous drug candidate screening has identified that muscone, l-borneol, and ferulic acid may target TRPV1 and TRPM8 for ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!