A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contributions of increased osteopontin and hypophosphatemia to dentoalveolar defects in osteomalacic Hyp mice. | LitMetric

Contributions of increased osteopontin and hypophosphatemia to dentoalveolar defects in osteomalacic Hyp mice.

Bone

Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. Electronic address:

Published: November 2023

AI Article Synopsis

  • X-linked hypophosphatemia (XLH) is a genetic disorder caused by mutations in the PHEX gene that leads to mineralization issues in bones and teeth, increasing risks for dental problems and rickets.
  • Research indicates that osteopontin (OPN), a protein that inhibits mineralization, accumulates in XLH patients, contributing to these issues, particularly in dental and skeletal tissues.
  • Experiments with a mouse model of XLH (Hyp mice) showed that removing the Spp1 gene that encodes OPN did not improve mineralization defects but did result in better mineralization when the mice were given a high-phosphate diet.

Article Abstract

X-linked hypophosphatemia (XLH) is an inherited disorder caused by inactivating mutations in the PHEX gene leading to renal phosphate wasting, rickets and osteomalacia. XLH is also associated with dentoalveolar mineralization defects in tooth enamel, dentin and cementum, and in alveolar bone, which lead to an increased prevalence of dental abscesses, periodontal disease and tooth loss. Genetic mouse experiments, and deficiencies in XLH patient therapies where treatments do not fully ameliorate mineralization defects, suggest that other pathogenic mechanisms may exist in XLH. The mineralization-inhibiting, secreted extracellular matrix phosphoprotein osteopontin (OPN, gene Spp1) is a substrate for the PHEX enzyme whereby extensive and inactivating degradation of inhibitory OPN by PHEX facilitates mineralization. Conversely, excess OPN accumulation in skeletal and dental tissues - for example in XLH where inactivating mutations in the PHEX gene limit degradation of inhibitory OPN, or as occurs in Fgf23-null mice - contributes to mineralization defects. We hypothesized that Spp1/OPN ablation in Hyp mice (a mouse model for XLH) would reduce dentoalveolar mineralization defects. Immunostaining revealed increased OPN in Hyp vs. wild-type (WT) alveolar bone, particularly in osteocyte lacunocanalicular networks where Hyp mice have characteristic hypomineralized peri-osteocytic lesions (POLs). Micro-computed tomography and histology showed that ablation of Spp1 in Hyp mice (Hyp;Spp1) on a normal diet did not ameliorate bulk defects in enamel, dentin, or alveolar bone. On a high-phosphate diet, both Hyp and Hyp;Spp1 mice showed improved mineralization of enamel, dentin, and alveolar bone. Silver staining indicated Spp1 ablation did not improve alveolar or mandibular bone osteocyte POLs in Hyp mice; however, they were normalized by a high-phosphate diet in both Hyp and Hyp;Spp1 mice, although inducing increased OPN. Collectively, these data indicate that despite changes in OPN content in the dentoalveolar mineralized tissues, there exist other compensatory mineralization mechanisms that arise from knockout of Spp1/OPN in the Hyp background.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529969PMC
http://dx.doi.org/10.1016/j.bone.2023.116886DOI Listing

Publication Analysis

Top Keywords

hyp mice
20
mineralization defects
16
alveolar bone
16
enamel dentin
12
hyp
9
mice
8
inactivating mutations
8
mutations phex
8
phex gene
8
dentoalveolar mineralization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!