Background: Hospitals are hotspots for antimicrobial resistance genes (ARGs), and play a significant role in their emergence and spread. Large numbers of ARGs will be ejected from hospitals via wastewater systems. Wastewater-based epidemiology has been consolidated as a tool to provide real-time information, and represents a promising approach to understanding the prevalence of bacteria and ARGs at community level.

Aims: To determine bacterial diversity and identify ARG profiles in hospital wastewater pathogens obtained from coronavirus disease 2019 (COVID-19) isolation hospitals compared with non-COVID-19 facilities during the pandemic.

Methods: Wastewater samples were obtained from four hospitals: three assigned to patients with COVID-19 patients and one assigned to non-COVID-19 patients. A microbial DNA quantitative polymerase chain reaction was used to determine bacterial diversity and ARGs.

Findings: The assay recorded 27 different bacterial species in the samples, belonging to the following phyla: Firmicutes (44.4%), Proteobacteria (33.3%), Actinobacteria (11%), Bacteroidetes (7.4%) and Verrucomicrobiota (3.7%). In addition, 61 ARGs were detected in total. The highest number of ARGs was observed for the Hazem Mebaireek General Hospital (HMGH) COVID-19 patient site (88.5%), and the lowest number of ARGs was found for the HMGH non-patient site (24.1%).

Conclusion: The emergence of contaminants in sewage water, such as ARGs and high pathogen levels, poses a potential risk to public health and the aquatic ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhin.2023.08.011DOI Listing

Publication Analysis

Top Keywords

bacterial diversity
12
wastewater-based epidemiology
8
covid-19 isolation
8
isolation hospitals
8
determine bacterial
8
number args
8
args
7
hospitals
5
epidemiology tracking
4
bacterial
4

Similar Publications

An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of .

Emerg Microbes Infect

January 2025

Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.

Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In , the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of .

View Article and Find Full Text PDF

Whole-genome automated assembly pipeline for strains from reference, and clinical samples using the integrated CtGAP pipeline.

NAR Genom Bioinform

March 2025

Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.

Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.

View Article and Find Full Text PDF

As one of the most sensitive and fragile alpine ecosystems in the Qilian Mountains, the alpine meadow holds significant scientific importance in understanding the changes in the characteristics of soil bacterial community in response to altitude and aspect variations. In our study, we analyzed the composition, diversity, and function of soil bacterial communities in alpine meadows at different altitudes and aspects and their relationship with environmental factors. Our results indicate that altitude and aspect orientation significantly influences the diversity index and composition of soil bacterial communities.

View Article and Find Full Text PDF

In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.

View Article and Find Full Text PDF

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!