Electrically conductive membrane distillation via an alternating current operation for zero liquid discharge.

Water Res

Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Electronic address:

Published: October 2023

Membrane distillation (MD) shows promise for achieving high salinity treatment and zero liquid discharge (ZLD) compared to conventional water treatment processes due to its unique characteristics, including low energy consumption and high resulting water quality. However, performance degradation due to fouling and scaling under high recovery conditions remains a challenge, particularly considering the need to control both cations and anions for maximum scaling mitigation. Accordingly, in this study, alternating current (AC) operation for electrically conductive membrane distillation (ECMD) is newly proposed, based on its potential for controlling both cations and anions, in contrast to conventional direct current (DC) operation. Systematic experiments and theoretical analysis show that water recovery in ECMD can be increased by 27% through AC operation. The proposed modification and effective AC operation of ECMD increase the practicality of using MD in desalination for a high recovery rate, perhaps even for ZLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120510DOI Listing

Publication Analysis

Top Keywords

membrane distillation
12
current operation
12
electrically conductive
8
conductive membrane
8
alternating current
8
liquid discharge
8
high recovery
8
cations anions
8
operation
5
distillation alternating
4

Similar Publications

At a time when increasing attention is paid to sustainability in chemistry, levulinic acid (LA) is one of the most important platform chemicals for the goal of overcoming our dependence on fossil raw materials. In this work, a new catalytic route for the effective utilization of these humin byproducts, enabling a cyclic synthesis of LA using formic acid (FA) as organocatalyst is proposed. Selective catalytic oxidation (SCO) of humins using the H5PV2Mo10O40 (HPA-2) polyoxometalate (POM) catalyst produces FA that can be isolated from the aqueous reaction mixture by using nanofiltration membranes accompanied by a complete catalyst recycling (>99%).

View Article and Find Full Text PDF

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Fresh passion fruit is sensitive to chilling injury (CI) during storage at improper low temperature of 5 °C, which lowers the fruit quality and limits its shelf life. The present study aimed to determine the impacts of melatonin on CI development of passion fruit in relation to antioxidant ability and membrane lipid metabolism during refrigeration. In present study, passion fruit was treated with 0.

View Article and Find Full Text PDF

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!