In this work, integrated transcriptome and proteome to offer a new insight of the molecular mechanisms linked to the nutritional quality of Koroneiki and Chenggu-32 by RNA sequencing and 4D Label-free quantitative proteomics technology. Physical and chemical properties studies showed that the main nutrient content of Koroneiki was significantly higher than Chenggu-32, proved the quality of Koroneiki was better. Compared to Koroneiki, there were differences in expression levels of 10,115 genes and 723 proteins in Chenggu-32, mainly related to enzymes in lipid metabolism and lipid biosynthesis. Through the joint analysis of transcriptome and proteome, it was found that the differentially expressed genes and differentially expressed proteins on the association were mainly enriched in starch and sucrose metabolism and α-linolenic acid metabolism pathways, indicated that the nutritional quality of olive fruits was related to the two metabolic pathways. The results of this study identified key genes and proteins related to nutrient metabolism and accumulation in olive fruits, provided transcriptomic and proteomic information for the molecular mechanism of nutritional changes in olive fruit, it helps to develop higher quality olive trees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2023.154072 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!