Gaining insight into the impact of electronic property and interface electrostatic field on ORR kinetics in alloy engineering via theoretical prognostication and experimental validation.

J Colloid Interface Sci

Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China. Electronic address:

Published: December 2023

Alloy engineering has been utilized as a potent strategy to modulate the oxygen reduction reaction (ORR) activity. However, the regulatory mechanism underpinning the ORR kinetics by means of alloy engineering is still shrouded in ambiguity. This work places emphasis on the kinetics of the ORR concerning PtM (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering. The ORR kinetic activity, as prognosticated by theory, shows significant agreement with experimental results, provided that the rate-determining step (RDS) accounts for a dominant role in the potential-independent kinetic mechanism. In essence, alloy engineering manipulates electronic properties through electron transfer to modulate intermediate adsorption and adjusts the interface electric field (E) to regulate hydrogen atom transport, ultimately influencing kinetics. The E holds greater significance in ORR kinetics compared to the intermediate adsorption (E), the corresponding degrees of correlation with free energy barriers (E) of RDS are -0.89, and 0.75, respectively. This work highlights the nature of alloy engineering for ORR kinetics modulation and assists in the design of efficient catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.08.125DOI Listing

Publication Analysis

Top Keywords

alloy engineering
24
orr kinetics
16
kinetics alloy
8
theoretical prognostication
8
prognostication experimental
8
experimental validation
8
engineering orr
8
intermediate adsorption
8
orr
6
kinetics
6

Similar Publications

Introduction: Chronic inflammation leading to implant failure present major challenges in orthopedics, dentistry, and reconstructive surgery. Titanium alloys, while widely used, often provoke inflammatory complications. Zinc-doped calcium phosphate (CaP) coatings offer potential to enhance implant integration by improving corrosion resistance, bioactivity, and immunocompatibility.

View Article and Find Full Text PDF

This study investigates zone melting (ZM) as an innovative method for recycling 7000 series aluminum alloy scraps, a byproduct of computer numerical control (CNC) machining in smartphone production. Traditional fluxing methods are ineffective at removing Zn, a key alloying element. Vacuum atmospheric ZM utilizes the evaporation of Zn and Mg impurities and solidification segregation to concentrate elemental impurities within the melt, facilitating their efficient removal.

View Article and Find Full Text PDF

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!