Alloy engineering has been utilized as a potent strategy to modulate the oxygen reduction reaction (ORR) activity. However, the regulatory mechanism underpinning the ORR kinetics by means of alloy engineering is still shrouded in ambiguity. This work places emphasis on the kinetics of the ORR concerning PtM (M = Cr, Co, Cu, Pd, Sn, and Ir) catalysts, and integrates theoretical prognostication and experimental validation to illuminate the fundamental principles of alloy engineering. The ORR kinetic activity, as prognosticated by theory, shows significant agreement with experimental results, provided that the rate-determining step (RDS) accounts for a dominant role in the potential-independent kinetic mechanism. In essence, alloy engineering manipulates electronic properties through electron transfer to modulate intermediate adsorption and adjusts the interface electric field (E) to regulate hydrogen atom transport, ultimately influencing kinetics. The E holds greater significance in ORR kinetics compared to the intermediate adsorption (E), the corresponding degrees of correlation with free energy barriers (E) of RDS are -0.89, and 0.75, respectively. This work highlights the nature of alloy engineering for ORR kinetics modulation and assists in the design of efficient catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.08.125 | DOI Listing |
J Adv Res
January 2025
National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St. 077125 Magurele, Romania. Electronic address:
Introduction: Chronic inflammation leading to implant failure present major challenges in orthopedics, dentistry, and reconstructive surgery. Titanium alloys, while widely used, often provoke inflammatory complications. Zinc-doped calcium phosphate (CaP) coatings offer potential to enhance implant integration by improving corrosion resistance, bioactivity, and immunocompatibility.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea. Electronic address:
This study investigates zone melting (ZM) as an innovative method for recycling 7000 series aluminum alloy scraps, a byproduct of computer numerical control (CNC) machining in smartphone production. Traditional fluxing methods are ineffective at removing Zn, a key alloying element. Vacuum atmospheric ZM utilizes the evaporation of Zn and Mg impurities and solidification segregation to concentrate elemental impurities within the melt, facilitating their efficient removal.
View Article and Find Full Text PDFACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.
Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!