Experimental and modeling investigation of dual-source iron release in water-solid-gas interaction of abandoned coal mine drainage.

Environ Geochem Health

State Key Laboratory for Geomechanics & Deep Underground Engineering, Xuzhou, 221116, China.

Published: November 2023

After mine closure and flooding, abandoned iron-prone devices and equipment (e.g., steel bolts and ground support meshes) and iron-bearing minerals (e.g., pyrite) form a dual-source iron pollution system in mine groundwater. Dual-source iron contributes to the water-solid-gas interaction in abandoned coal mines and the release of iron at different periods after mine closure, posing environmental risks in groundwater and discharging acid mine drainage, which contains large amounts of iron. In this study, a series of hydrochemical experiments were conducted to simulate the iron release process of the dual-source system, and electrochemical experiments were carried out to reveal the reaction mechanism, characterize the dual-source iron pollution release mode and quantify the release rate ratio. PHREEQC package was used to simulate the long-term hydrogeochemistry reactions of the water-solid-gas interaction to determine the key factors and suitable conditions that inhibit dual-source iron release. The results show that the dual-source system of iron-bearing minerals (pyrite) and steel bolts promote iron release from each other. The resulting calculated annual iron release indicated that the overall iron release rate ratio is: dual-source > bolt > pyrite, indicating that mine water would remain acidic for a long time due to the continuous release of iron from the system. Numerical modeling results show that maintaining the environment temperature below 25 °C and the pH above 3.5 is an effective way to reduce the iron release rate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-023-01731-4DOI Listing

Publication Analysis

Top Keywords

iron release
28
dual-source iron
20
iron
13
water-solid-gas interaction
12
release rate
12
release
11
interaction abandoned
8
abandoned coal
8
mine drainage
8
mine closure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!