A novel method based on light-induced fabrication of a poly (3,4-ethylenedioxythiophene)-polycaprolactone (PEDOT-PCL) scaffold using phenacyl bromide (PAB) as a single-component photoinitiator is presented. HBr released from the step-growth polymerization of EDOT is utilized as an in situ catalyst for the chain-growth polymerization of ε-caprolactone. Detailed investigations disclose the formation of a self-assembled nanoporous electroconductive scaffold (1.2 mS cm ). Fluorescence emission spectra of the fabricated scaffold exhibit a mixed solvatochromic behavior, indicating specific interactions between the self-assembled scaffold and solvents with varying polarities, as evidenced by transmission electron microscopy (TEM). Moreover, the same light-induced technique can also be applied for bulk photopolymerization showcasing the versatility and wide-ranging scope of the originated method. In brief, this study introduces a novel approach for light-induced polymerization reactions that is merging step-growth and chain-growth mechanisms. This innovative approach is promising to facilitate in situ polymerization of monomers possessing diverse functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300455 | DOI Listing |
Adv Mater
November 2024
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing, Getreidemarkt 9, Vienna, 1060, Austria.
Vanillyl alcohol has emerged as a widely used building block for the development of biobased monomers. More specifically, the cationic (photo-)polymerization of the respective diglycidyl ether (DGEVA) is known to produce materials of outstanding thermomechanical performance. Generally, chain transfer agents (CTAs) are of interest in cationic resins not only because they lead to more homogeneous polymer networks but also because they strikingly improve the polymerization speed.
View Article and Find Full Text PDFAdv Mater
October 2024
Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
Drawing inspiration from nature's own intricate designs, synthetic multimaterial structures have the potential to offer properties and functionality that exceed those of the individual components. However, several contemporary hurdles, from a lack of efficient chemistries to processing constraints, preclude the rapid and precise manufacturing of such materials. Herein, the development of a photocurable resin comprising color-selective initiators is reported, triggering disparate polymerization mechanisms between acrylate and thiol functionality.
View Article and Find Full Text PDFACS Macro Lett
May 2024
Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
Flow chemistry presents many advantages over batch processes for the fast and continuous production of polymers under more robust, safer, and easily scalable conditions. Although largely exploited for chain-growth polymerizations, it has rarely been applied to step-growth polymerizations (SGP) due to their inherent limitations. Here, we report the facile and fast preparation of an emerging class of nonisocyanate polyurethanes, i.
View Article and Find Full Text PDFMacromol Biosci
August 2024
Ghent University, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4-Bis, Ghent, 9000, Belgium.
The potential of recombinant materials in the field of adipose tissue engineering (ATE) is investigated using a bottom-up tissue engineering (TE) approach. This study explores the synthesis of different photo-crosslinkable gelatin derivatives, including both natural and recombinant materials, with a particular emphasis on chain growth and step growth polymerization. Gelatin type B (Gel-B) and a recombinant collagen peptide (RCPhC1) are used as starting materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!