Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microbial decomposers (bacteria and fungi) are likely to interact with plastic particles introduced into natural systems, particularly micro- and nanoplastics (MNPs), exposing them to a variety of risks. In vitro testing has proven to be an accessible and viable method for gaining insights into how microbial decomposers behave individually and systemically toward MNPs. Recent advances have enhanced our understanding of MNP interactions with organisms, revealing the molecular foundations of adaptive responses as well as the biological impact and potential risks to MNPs. Despite widespread attention, this topic has not yet been reviewed. Here, we conducted a systematic review of the available research to critically assess and highlight the most recent advances in two major areas: (1) methods for in vitro evaluation of environmentally relevant microbial decomposers to MNPs; and (2) current understanding of the underlying toxicity mechanisms gained from in vitro assessments. We also addressed the key considerations throughout and proposed available opportunities in the field. Our analysis revealed that MNPs' toxicity has been studied in vitro either alone or in combination with other contaminants (e.g., antibiotics and metallic nanoparticles), with Escherichia coli and polystyrene particles receiving the most attention. Moreover, there were methodological differences in terms of MNP size, shape, polymer, surface characteristics, exposure period, and concentrations. A combination of methods, including growth-viability tests, biochemical assays, and omics profiling (metabolomics and transcriptomics), were employed to detect the effects of MNP exposure and explain its toxicity mechanism. The current literature suggests that the impacts of MNPs on microbial decomposers include alterations in the antioxidative system, gene expression levels and cell-membrane permeability and oxidative damage, all of which can be further influenced by MNPs interaction with other contaminants. This review will thus provide critical insights and up-to-date knowledge to assist novices and experts in promoting advancements and research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!