Convexity constraints on linear background models for electron energy-loss spectra.

Ultramicroscopy

Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Nanolab center of excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

Published: December 2023

In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model's linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2023.113830DOI Listing

Publication Analysis

Top Keywords

convexity constraints
8
wide energy
8
constraints linear
4
linear background
4
background models
4
models electron
4
electron energy-loss
4
energy-loss spectra
4
spectra paper
4
paper convexity
4

Similar Publications

For public security purposes, distributed surveillance systems are widely deployed in key areas. These systems comprise visual sensors, edge computing boxes, and cloud servers. Resource scheduling algorithms are critical to ensure such systems' robustness and efficiency.

View Article and Find Full Text PDF

A communication network integrating multiple modes can effectively support the sustainable development of next-generation wireless communications. Integrated sensing, communication, and power transfer (ISCPT) represents an emerging technological paradigm that not only facilitates information transmission but also enables environmental sensing and wireless power transfer. To achieve optimal beamforming in transmission, it is crucial to satisfy multiple constraints, including quality of service (QoS), radar sensing accuracy, and power transfer efficiency, while ensuring fundamental system performance.

View Article and Find Full Text PDF

Discovering non-associated pressure-sensitive plasticity models with EUCLID.

Adv Model Simul Eng Sci

January 2025

Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.

We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.

View Article and Find Full Text PDF

Parallel transmission (pTx) is an important technique for reducing transmit field inhomogeneities at ultrahigh-field (UHF) MRI. pTx typically involves solving an optimization problem for radiofrequency pulse design, with hard constraints on specific-absorption rate (SAR) and/or power, which may be time-consuming. In this work, we propose a novel approach towards incorporating hard constraints to physics-driven neural networks.

View Article and Find Full Text PDF

We present a methodology for establishing the existence of quadratic Lyapunov inequalities for a wide range of first-order methods used to solve convex optimization problems. In particular, we consider (i) classes of optimization problems of finite-sum form with (possibly strongly) convex and possibly smooth functional components, (ii) first-order methods that can be written as a linear system on state-space form in feedback interconnection with the subdifferentials of the functional components of the objective function, and (iii) quadratic Lyapunov inequalities that can be used to draw convergence conclusions. We present a necessary and sufficient condition for the existence of a quadratic Lyapunov inequality within a predefined class of Lyapunov inequalities, which amounts to solving a small-sized semidefinite program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!