In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model's linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2023.113830 | DOI Listing |
Sensors (Basel)
January 2025
Intelligent Control Laboratory, Xi'an Research Institute of High Technology, Xi'an 710025, China.
For public security purposes, distributed surveillance systems are widely deployed in key areas. These systems comprise visual sensors, edge computing boxes, and cloud servers. Resource scheduling algorithms are critical to ensure such systems' robustness and efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China.
A communication network integrating multiple modes can effectively support the sustainable development of next-generation wireless communications. Integrated sensing, communication, and power transfer (ISCPT) represents an emerging technological paradigm that not only facilitates information transmission but also enables environmental sensing and wireless power transfer. To achieve optimal beamforming in transmission, it is crucial to satisfy multiple constraints, including quality of service (QoS), radar sensing accuracy, and power transfer efficiency, while ensuring fundamental system performance.
View Article and Find Full Text PDFAdv Model Simul Eng Sci
January 2025
Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.
We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States.
Parallel transmission (pTx) is an important technique for reducing transmit field inhomogeneities at ultrahigh-field (UHF) MRI. pTx typically involves solving an optimization problem for radiofrequency pulse design, with hard constraints on specific-absorption rate (SAR) and/or power, which may be time-consuming. In this work, we propose a novel approach towards incorporating hard constraints to physics-driven neural networks.
View Article and Find Full Text PDFMath Program
February 2024
Department of Automatic Control, Lund University, Lund, Sweden.
We present a methodology for establishing the existence of quadratic Lyapunov inequalities for a wide range of first-order methods used to solve convex optimization problems. In particular, we consider (i) classes of optimization problems of finite-sum form with (possibly strongly) convex and possibly smooth functional components, (ii) first-order methods that can be written as a linear system on state-space form in feedback interconnection with the subdifferentials of the functional components of the objective function, and (iii) quadratic Lyapunov inequalities that can be used to draw convergence conclusions. We present a necessary and sufficient condition for the existence of a quadratic Lyapunov inequality within a predefined class of Lyapunov inequalities, which amounts to solving a small-sized semidefinite program.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!