A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated chronic wounds medical assessment and tracking framework based on deep learning. | LitMetric

Chronic wounds are a latent health problem worldwide, due to high incidence of diseases such as diabetes and Hansen. Typically, wound evolution is tracked by medical staff through visual inspection, which becomes problematic for patients in rural areas with poor transportation and medical infrastructure. Alternatively, the design of software platforms for medical imaging applications has been increasingly prioritized. This work presents a framework for chronic wound tracking based on deep learning, which works on RGB images captured with smartphones, avoiding bulky and complicated acquisition setups. The framework integrates mainstream algorithms for medical image processing, including wound detection, segmentation, as well as quantitative analysis of area and perimeter. Additionally, a new chronic wounds dataset from leprosy patients is provided to the scientific community. Conducted experiments demonstrate the validity and accuracy of the proposed framework, with up to 84.5% in precision.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107335DOI Listing

Publication Analysis

Top Keywords

chronic wounds
12
based deep
8
deep learning
8
medical
5
automated chronic
4
wounds medical
4
medical assessment
4
assessment tracking
4
framework
4
tracking framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!