Recent advances in Zn imaging: From organelles to in vivo applications.

Curr Opin Chem Biol

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China. Electronic address:

Published: October 2023

Zn is involved in various physiological and pathological processes in living systems. Monitoring the dynamic spatiotemporal changes of Zn levels in organelles, cells, and in vivo is of great importance for the investigation of the physiological and pathological functions of Zn. However, this task is quite challenging since Zn in living systems is present at low concentrations and undergoes rapid dynamic changes. In this review, we summarize the design and application of fluorescent probes for Zn imaging in organelles, cells, and live organisms reported over the past two years. We aim to provide inspiration for the design of novel Zn probes for multi-level monitoring and deepen the understanding of Zn biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2023.102378DOI Listing

Publication Analysis

Top Keywords

imaging organelles
8
physiological pathological
8
living systems
8
organelles cells
8
advances imaging
4
organelles in vivo
4
in vivo applications
4
applications involved
4
involved physiological
4
pathological processes
4

Similar Publications

The Golgi apparatus is a critical organelle responsible for intracellular trafficking and signaling, orchestrating essential processes such as protein and lipid sorting . Dysregulation of its function has been implicated in various pathologies, including obesity, diabetes, and cancer, highlighting its importance as a potential therapeutic target. Despite this, the development of tools to selectively target the Golgi in specific cell types remain a significant unmet challenge in imaging and drug discovery.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Given that stomach cancer is the fourth leading cause of cancer-related death, there is a need to develop new drugs. Among various methods, metal-based coordination compounds are considered as an efficient strategy against this type of cancer. Similarly, the benzimidazole moiety plays a crucial role in biology; thus, various benzimidazole-based compounds have been found to be active as potential anticancer drugs and are currently used in clinical trials.

View Article and Find Full Text PDF

Mitochondria-Targeting Type-I Photodynamic Therapy Based on Phenothiazine for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Oxidative Stress.

Int J Nanomedicine

January 2025

Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.

Purpose: Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer.

Methods: The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs).

View Article and Find Full Text PDF

Pathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!