Ruxolitinib altered IFN-β induced necroptosis of human dental pulp stem cells during osteoblast differentiation.

Arch Oral Biol

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Published: November 2023

Objective: This study aimed to evaluate the role of ruxolitinib in the interferon beta (IFN-β) mediated osteoblast differentiation using human dental pulp stem cells (hDPSCs).

Design: hDPSCs from five deciduous teeth of healthy patients were stimulated by adding human recombinant IFN-β protein (1 or 2 ng/ml) to the osteogenic differentiation induction medium. Substrate formation was determined using Alizarin Red staining, calcium concentration, and osteoblast marker expression levels. Ruxolitinib was used to inhibit the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway. Apoptosis was detected using terminal deoxynucleotidyl nick-end labeling (TUNEL) staining, and necroptosis was detected using propidium iodide staining and phosphorylated mixed lineage kinase domain-like protein (pMLKL) expression.

Results: In the IFN-β-treated group, substrate formation was inhibited by a reduction in alkaline phosphatase (ALP) expression in a concentration-dependent manner. Although the proliferation potency was unchanged between the IFN-β-treated and control groups, the cell number was significantly reduced in the experimental group. TUNEL-positive cell number was not significantly different; however, the protein level of necroptosis markers, interleukin-6 (IL-6) and pMLKL were significantly increased in the substrate formation. Cell number and ALP expression level were improved in the group administered ruxolitinib, a JAK-STAT inhibitor. Additionally, ruxolitinib significantly suppressed IL-6 and pMLKL levels.

Conclusion: Ruxolitinib interfered with the IFN-β-mediated necroptosis and osteogenic differentiation via the JAK-STAT pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2023.105797DOI Listing

Publication Analysis

Top Keywords

substrate formation
12
cell number
12
human dental
8
dental pulp
8
pulp stem
8
stem cells
8
osteoblast differentiation
8
osteogenic differentiation
8
jak-stat pathway
8
alp expression
8

Similar Publications

The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications.

Front Pharmacol

January 2025

Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions.

View Article and Find Full Text PDF

Enhancing High-Level Food-Grade Expression of Glutamate Decarboxylase and Its Application in the Production of γ-Aminobutyric Acid.

J Microbiol Biotechnol

December 2024

School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China.

Gamma-aminobutyric acid (GABA), a non-proteinogenic amino acid, exhibits diverse physiological functions and finds extensive applications in food, medicine, and various industries. Glutamate decarboxylase (GAD) can effectively convert L-glutamic acid (L-Glu) or monosodium glutamate (MSG) into GABA. However, the low food-grade expression of GAD has hindered large-scale GABA production.

View Article and Find Full Text PDF

The in-vitro digestibility of instant noodles: Interplay of texture, microstructure and starch structure.

Food Res Int

February 2025

Tianjin Key Laboratory of Food Science and Health, School of Medicine, NanKai University, Tianjin 300071, China. Electronic address:

Instant noodles are a worldwide food staple. However, the correlation between its production methods and nutritional characteristics remains unclear. This study aims to elucidate the effects of hydrothermal (steaming and boiling) and cooling techniques on instant noodles in-vitro digestibility.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

Xanthine oxidase (XO) and lactoperoxidase (LPO) are highly abundant enzymes in milk. Their substrates, xanthine and thiocyanate, are found in elevated amounts in infant saliva, leading to a proposed interaction between milk and saliva referred to as the XO-LPO system. This system is suggested to generate reactive oxygen and nitrogen species with potential antibacterial effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!