Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Advances in technology have generated larger omics datasets with potential applications for machine learning. In many datasets, however, cost and limited sample availability result in an excessively higher number of features as compared to observations. Moreover, biological processes are associated with networks of core and peripheral genes, while traditional feature selection approaches capture only core genes.
Results: To overcome these limitations, we present dRFEtools that implements dynamic recursive feature elimination (RFE), reducing computational time with high accuracy compared to standard RFE, expanding dynamic RFE to regression algorithms, and outputting the subsets of features that hold predictive power with and without peripheral features. dRFEtools integrates with scikit-learn (the popular Python machine learning platform) and thus provides new opportunities for dynamic RFE in large-scale omics data while enhancing its interpretability.
Availability And Implementation: dRFEtools is freely available on PyPI at https://pypi.org/project/drfetools/ or on GitHub https://github.com/LieberInstitute/dRFEtools, implemented in Python 3, and supported on Linux, Windows, and Mac OS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471895 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btad513 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!