The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447921 | PMC |
http://dx.doi.org/10.1111/gtc.13061 | DOI Listing |
Mol Ecol
January 2025
Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA.
Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
December 2024
Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia1113, Bulgaria.
Multiple Sclerosis (MS), a debilitating inflammatory disorder of the central nervous system characterized by demyelination, is significantly influenced by polygenic variations. Although the precise cause of MS remains unclear, it is believed to arise from a complex interplay of genetic and environmental factors. Recent investigations have focused on the polygenic nature of genetic alterations linked to MS risk.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!