Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mitigating the atmospheric greenhouse effect while enhancing the inherent soil quality and productive capacity is possible through soil carbon (C) sequestration, which has a significant potential to counteract the adverse effects of agroecosystem level C emission through natural and anthropogenic means. Although rice is the most important food in India, feeding more than 60% of the country's population, it is commonly blamed for significant methane (CH) emissions that accelerate climate change. Higher initial soil organic matter concentrations would create more CH under the flooded soil conditions, as reducible soil C is a prerequisite for CH generation. In India, rice is generally cultivated in lowlands under continuous flooding. Less extensive organic matter breakdown in lowland rice agroecosystems often significantly impacts the dynamics of soil active and passive C pools. Change from conventional to conservation agriculture might trap a significant quantity of SOC. The study aims to investigate the potential of rice-based soils to sequester C and reduce the accelerated greenhouse effects through modified farming practices, such as crop residue retention, crop rotation, organic farming, varietal selection, conservation agriculture, integrated nutrient management, and water management. Overall, lowland rice agroecosystems can sequester significant amounts of SOC, but this potential must be balanced against the potential for CH emissions. Management practices that reduce CH emissions while increasing soil C sequestration should be promoted and adopted to maximize the sustainability of rice agroecosystems. This review is important for understanding the effectiveness of the balance between SOC sequestration and CH emissions in lowland rice agroecosystems for adopting sustainable agricultural practices in the context of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-11673-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!