Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-023-02289-5 | DOI Listing |
Zootaxa
November 2024
Honorary Research Associate; Museum of New Zealand Te Papa Tongarewa; Wellington; New Zealand.
J Hazard Mater
November 2024
University of Delaware, Newark, DE 19716, USA.
Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Geological Survey of Finland (GTK), Vuorimiehentie 5, 02151 Espoo, Finland; University of Eastern Finland (UEF), Tulliportinkatu 1, 80130 Joensuu, Finland.
Plants (Basel)
November 2024
Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, 60-649 Poznan, Poland.
The rising global temperature makes understanding the impact of warming on plant physiology in critical ecosystems essential, as changes in plant physiology can either help mitigate or intensify climate change. The northern peatlands belong to the most important parts of the global carbon cycle. Therefore, knowledge of the ongoing and future climate change impacts on peatland vegetation photosynthesis is crucial for further refinement of peatland or global carbon cycle and vegetation models.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia.
The balance between photosynthetic carbon accumulation and respiratory loss in plants varies depending on temperature. This leads to a situation where the increased need for carbon is not met when a certain temperature threshold is reached. Over the last two decades, temperature thresholds in carbon metabolism in autotrophic systems have been widely studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!