Osteoarthritis (OA) is a common degenerative joint disease, which is characterized by wear of articular cartilage and narrow joint space, resulting in joint movement disorder. At present, accurate molecular mechanisms and effective interventions are still being explored. Here, we propose that angelica sinensis polysaccharide (ASP) alleviates OA progression by activating peroxisome proliferator-activated receptor gamma (PPARγ). Therapeutic effect of ASP improving mitochondrial metabolism of OA chondrocytes was evaluated in vitro and in vivo, respectively. During cell experiments, the concentration and time response of tert butyl hydroperoxide (TBHP) and ASP were determined by cell viability. Apoptosis was detected by flow cytometry. Mitochondrial metabolism was detected by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), release of cytochrome C, adenosine triphosphate (ATP) production, and superoxide dismutase 2 (SOD2) activity. Expressions of Aggrecan, collagen type II (Col2a1), PPARγ, and SOD2 were detected by qRT-PCR and western blot. In animal experiments, we detected cell apoptosis and target protein expression separately through terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining and immunohistochemistry. Pretreatment of ASP significantly activated PPARγ and SOD2 in rat chondrocytes incubated with TBHP, cleared ROS, improved mitochondrial metabolism, increased chondrocytes viability, and alleviated chondrocytes apoptosis. In vivo, the administration of ASP could effectively ameliorate cartilage degeneration in OA rats, promote extracellular matrix synthesis, and decelerate the progress of OA. Our research identifies the role of ASP in mitochondrial metabolism of OA chondrocytes through PPARγ/SOD2/ROS pathways, which provides a new idea for the treatment of OA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.7979DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolism
20
angelica sinensis
8
sinensis polysaccharide
8
chondrocytes pparγ/sod2/ros
8
pparγ/sod2/ros pathways
8
metabolism chondrocytes
8
pparγ sod2
8
mitochondrial
6
chondrocytes
6
asp
6

Similar Publications

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.

View Article and Find Full Text PDF

Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.

Mol Biol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.

View Article and Find Full Text PDF

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!