Influenza A virus (IAV) is a leading cause of human respiratory infections and poses a major public health concern. IAV replication can affect the expression of DNA methyltransferases (DNMTs), and the subsequent changes in DNA methylation regulate gene expression and may lead to abnormal gene transcription and translation, yet the underlying mechanisms of virus-induced epigenetic changes from DNA methylation and its role in virus-host interactions remain elusive. Here in this paper, we showed that DNMT1 expression could be suppressed following the inhibition of miR-142-5p or the PI3K/AKT signaling pathway during IAV infection, resulting in demethylation of the promotor region of the 2'-5'-oligoadenylate synthetase-like (OASL) protein and promotion of its expression in A549 cells. OASL expression enhanced RIG-I-mediated interferon induction and then suppressed replication of IAV. Our study elucidated an innate immunity mechanism by which up-regulation of OASL contributes to host antiviral responses via epigenetic modifications in IAV infection, which could provide important insights into the understanding of viral pathogenesis and host antiviral defense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459088PMC
http://dx.doi.org/10.3390/v15081646DOI Listing

Publication Analysis

Top Keywords

oasl protein
8
influenza virus
8
changes dna
8
dna methylation
8
iav infection
8
host antiviral
8
iav
5
expression
5
host dna
4
dna demethylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!