Replication of the RNA genome of influenza A virus occurs in the nucleus of infected cells. The influenza nucleoprotein (NP) associated with the viral RNA into ribonucleoprotein complexes (vRNPs) is involved in the nuclear import of the viral genome. NP has two nuclear localization sequences (NLSs), NLS1 and NLS2. Most studies have concentrated on the role of NP's NLSs using in vitro-assembled or purified vRNPs, which may differ from incoming vRNPs released in the cytoplasm during an infection. Here, we study the contribution of the NP's NLSs to the nuclear import of vRNPs in a cell culture model system for influenza infection: human lung carcinoma cells infected with viruses containing NP-carrying mutations in NLS1 or NLS2 (NLS2MT), generated by reverse genetics. We found that cells infected with these mutant viruses were defective in the nuclear import of incoming vRNPs and produced reduced amounts of newly synthesized NP, newly assembled vRNP, and progeny virus. In addition, NLS2MT-infected cells were also defective in the nucleolar accumulation of NP, confirming the nucleolar localization role of NLS2. Our findings indicate that both NLS1 and NLS2 have to be present for successful infection and demonstrate the crucial role of these two NLSs in the infection cycle of the influenza A virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459959PMC
http://dx.doi.org/10.3390/v15081641DOI Listing

Publication Analysis

Top Keywords

nuclear import
16
nls1 nls2
12
nuclear localization
8
localization sequences
8
influenza nucleoprotein
8
infected cells
8
influenza virus
8
np's nlss
8
incoming vrnps
8
cells infected
8

Similar Publications

The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.

View Article and Find Full Text PDF

Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore, and (ii) modulating the strength of the bipartite nuclear localization signal (bNLS) in their kinase sensor domains, to ensures that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning.

View Article and Find Full Text PDF

Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.

View Article and Find Full Text PDF

NUCLEAR RNA-BINDING PROTEINS MEET CYTOPLASMIC VIRUSES.

RNA

January 2025

MRC University of Glasgow Centre for Virus Research, University of Glasgow.

Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors.

View Article and Find Full Text PDF

The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!