Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The basic functions of an autonomous vehicle typically involve navigating from one point to another in the world by following a reference path and analyzing the traversability along this path to avoid potential obstacles. What happens when the vehicle is subject to uncertainties in its localization? All its capabilities, whether path following or obstacle avoidance, are affected by this uncertainty, and stopping the vehicle becomes the safest solution. In this work, we propose a framework that optimally combines path following and obstacle avoidance while keeping these two objectives independent, ensuring that the limitations of one do not affect the other. Absolute localization uncertainty only has an impact on path following, and in no way affects obstacle avoidance, which is performed in the robot's local reference frame. Therefore, it is possible to navigate with or without prior information, without being affected by position uncertainty during obstacle avoidance maneuvers. We conducted tests on an EZ10 shuttle in the PAVIN experimental platform to validate our approach. These experimental results show that our approach achieves satisfactory performance, making it a promising solution for collision-free navigation applications for mobile robots even when localization is not accurate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458123 | PMC |
http://dx.doi.org/10.3390/s23167237 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!