Due to the inconvenience of drawing blood and the possibility of infection associated with invasive methods, research on non-invasive glycated hemoglobin (HbA1c) measurement methods is increasing. Utilizing wrist photoplethysmography (PPG) with machine learning to estimate HbA1c can be a promising method for non-invasive HbA1c monitoring in diabetic patients. This study aims to develop a HbA1c estimation system based on machine learning algorithms using PPG signals obtained from the wrist. We used a PPG based dataset of 22 subjects and algorithms such as extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), Categorical Boost (CatBoost) and random forest (RF) to estimate the HbA1c values. Note that the AC-to-DC ratios for three wavelengths were newly adopted as features in addition to the previously acquired 15 features from the PPG signal and a comparative analysis was performed between the performances of several algorithms. We showed that feature-importance-based selection can improve performance while reducing computational complexity. We also showed that AC-to-DC ratio (AC/DC) features play a dominant role in improving HbA1c estimation performance and, furthermore, a good performance can be obtained without the need for external features such as BMI and SpO. These findings may help shape the future of wrist-based HbA1c estimation (e.g., via a wristwatch or wristband), which could increase the scope of noninvasive and effective monitoring techniques for diabetic patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460024PMC
http://dx.doi.org/10.3390/s23167231DOI Listing

Publication Analysis

Top Keywords

hba1c estimation
16
machine learning
12
comparative analysis
8
learning algorithms
8
hba1c
8
wrist ppg
8
estimate hba1c
8
diabetic patients
8
gradient boosting
8
ppg
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!