Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A spiking neural network (SNN) is a type of artificial neural network that operates based on discrete spikes to process timing information, similar to the manner in which the human brain processes real-world problems. In this paper, we propose a new spiking neural network (SNN) based on conventional, biologically plausible paradigms, such as the leaky integrate-and-fire model, spike timing-dependent plasticity, and the adaptive spiking threshold, by suggesting new biological models; that is, dynamic inhibition weight change, a synaptic wiring method, and Bayesian inference. The proposed network is designed for image recognition tasks, which are frequently used to evaluate the performance of conventional deep neural networks. To manifest the bio-realistic neural architecture, the learning is unsupervised, and the inhibition weight is dynamically changed; this, in turn, affects the synaptic wiring method based on Hebbian learning and the neuronal population. In the inference phase, Bayesian inference successfully classifies the input digits by counting the spikes from the responding neurons. The experimental results demonstrate that the proposed biological model ensures a performance improvement compared with other biologically plausible SNN models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459513 | PMC |
http://dx.doi.org/10.3390/s23167232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!