Sensor Fusion for Power Line Sensitive Monitoring and Load State Estimation.

Sensors (Basel)

Institute for Production Technology and Systems, Leuphana University of Lueneburg, Universitätsallee 1, D-21335 Lueneburg, Germany.

Published: August 2023

This paper deals with a specific approach to fault detection in transformer systems using the extended Kalman filter (EKF). Specific faults are investigated in power lines where a transformer is connected and only the primary electrical quantities, input voltage, and current are measured. Faults can occur in either the primary or secondary winding of the transformer. Two EKFs are proposed for fault detection. The first EKF estimates the voltage, current, and electrical load resistance of the secondary winding using measurements of the primary winding. The model of the transformer used is known as mutual inductance. For a short circuit in the secondary winding, the observer generates a signal indicating a fault. The second EKF is designed for harmonic detection and estimates the amplitude and frequency of the primary winding voltage. This contribution focuses on mathematical methods useful for galvanic decoupled soft sensing and fault detection. Moreover, the contribution emphasizes how EKF observers play a key role in the context of sensor fusion, which is characterized by merging multiple lines of information in an accurate conceptualization of data and their reconciliation with the measurements. Simulations demonstrate the efficiency of the fault detection using EKF observers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458177PMC
http://dx.doi.org/10.3390/s23167173DOI Listing

Publication Analysis

Top Keywords

fault detection
16
secondary winding
12
sensor fusion
8
voltage current
8
detection ekf
8
primary winding
8
ekf observers
8
fault
5
detection
5
ekf
5

Similar Publications

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

A Comprehensive Survey on the Integrity of Localization Systems.

Sensors (Basel)

January 2025

Inria-ASTRA Team, 48 Rue Barrault, 75013 Paris, France.

This survey extends and refines the existing definitions of integrity and protection level in localization systems (localization as a broad term, i.e., not limited to GNSS-based localization).

View Article and Find Full Text PDF

This study addresses the challenges of electromagnetic interference and unstable signal transmission encountered by traditional sensors in detecting partial discharge (PD) within stator slots of large motors. A novel Extrinsic Fabry-Perot Interferometer (EFPI) sensor with a vibration-coupling air gap was designed to enhance the narrowband resonant detection sensitivity for PD ultrasonic signals by optimizing the diaphragm structure and coupling interface. The sensor features a quartz diaphragm with a thickness of 20 μM, an effective constrained radius of 0.

View Article and Find Full Text PDF

Abnormal Operation Detection of Automated Orchard Irrigation System Actuators by Power Consumption Level.

Sensors (Basel)

January 2025

Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea.

Information and communication technology (ICT) components, especially actuators in automated irrigation systems, are essential for managing precise irrigation and optimal soil moisture, enhancing orchard growth and yield. However, actuator malfunctions can lead to inefficient irrigation, resulting in water imbalances that impact crop health and reduce productivity. The objective of this study was to develop a signal processing technique to detect potential malfunctions based on the power consumption level and operating status of actuators for an automated orchard irrigation system.

View Article and Find Full Text PDF

In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!