Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Animal behaviour can be an indicator of health and welfare. Monitoring behaviour through visual observation is labour-intensive and there is a risk of missing infrequent behaviours. Twelve healthy domestic shorthair cats were fitted with triaxial accelerometers mounted on a collar and harness. Over seven days, accelerometer and video footage were collected simultaneously. Identifier variables (n = 32) were calculated from the accelerometer data and summarized into 1 s epochs. Twenty-four behaviours were annotated from the video recordings and aligned with the summarised accelerometer data. Models were created using random forest (RF) and supervised self-organizing map (SOM) machine learning techniques for each mounting location. Multiple modelling rounds were run to select and merge behaviours based on performance values. All models were then tested on a validation accelerometer dataset from the same twelve cats to identify behaviours. The frequency of behaviours was calculated and compared using Dirichlet regression. Despite the SOM models having higher Kappa (>95%) and overall accuracy (>95%) compared with the RF models (64-76% and 70-86%, respectively), the RF models predicted behaviours more consistently between mounting locations. These results indicate that triaxial accelerometers can identify cat specific behaviours.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458840 | PMC |
http://dx.doi.org/10.3390/s23167165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!