Temporal Estimation of Non-Rigid Dynamic Human Point Cloud Sequence Using 3D Skeleton-Based Deformation for Compression.

Sensors (Basel)

Electronic Materials Engineering, Kwangwoon University, Kwangwoon-ro 20, Seoul 01897, Republic of Korea.

Published: August 2023

AI Article Synopsis

  • The paper presents a novel algorithm for transmitting and reconstructing dynamic point cloud sequences by breaking them down into groups of point cloud frames (PCFs) and selecting key frames for motion analysis.
  • The algorithm involves predicting a 3D skeleton from the input data, estimating skeleton motion based on joints and bones, and transforming the point cloud model into a mesh to handle deformations typical of non-rigid human shapes.
  • Experimental results indicate that the method effectively compresses these 3D sequences, suggesting potential compatibility with existing point cloud compression techniques for improved efficiency.

Article Abstract

This paper proposes an algorithm for transmitting and reconstructing the estimated point cloud by temporally estimating a dynamic point cloud sequence. When a non-rigid 3D point cloud sequence (PCS) is input, the sequence is divided into groups of point cloud frames (PCFs), and a key PCF is selected. The 3D skeleton is predicted through 3D pose estimation, and the motion of the skeleton is estimated by analyzing the joints and bones of the 3D skeleton. For the deformation of the non-rigid human PC, the 3D PC model is transformed into a mesh model, and the key PCF is rigged using the 3D skeleton. After deforming the key PCF into the target PCF utilizing the motion vector of the estimated skeleton, the residual PC between the motion compensation PCF and the target PCF is generated. If there is a key PCF, the motion vector of the target PCF, and a residual PC, the target PCF can be reconstructed. Just as compression is performed using pixel correlation between frames in a 2D video, this paper compresses 3D PCFs by estimating the non-rigid 3D motion of a 3D object in a 3D PC. The proposed algorithm can be regarded as an extension of the 2D motion estimation of a rigid local region in a 2D plane to the 3D motion estimation of a non-rigid object (human) in 3D space. Experimental results show that the proposed method can successfully compress 3D PC sequences. If it is used together with a PC compression technique such as MPEG PCC (point cloud compression) in the future, a system with high compression efficiency may be configured.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459032PMC
http://dx.doi.org/10.3390/s23167163DOI Listing

Publication Analysis

Top Keywords

point cloud
24
key pcf
16
target pcf
16
cloud sequence
12
pcf
9
estimation non-rigid
8
pcf target
8
motion vector
8
motion estimation
8
motion
7

Similar Publications

Through the mobilization of movable objects due to the extreme hydraulic conditions during a flood event, blockages, damage to infrastructure, and endangerment of human lives can occur. To identify potential hazards from aerial imagery and take appropriate precautions, a change detection tool (CDT) was developed and tested using a study area along the Aisch River in Germany. The focus of the CDT development was on near real-time analysis of point cloud data generated by structure from motion from aerial images of temporally separated surveys, enabling rapid and targeted implementation of measures.

View Article and Find Full Text PDF

The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its progression and lead to better treatment outcomes. Vision-based approaches have been proposed for the early detection of PD using gait.

View Article and Find Full Text PDF

Climate change is one of the most crucial issues in human society such that if it is not given sufficient attention, it can become a great threat to both humans and the Earth. Due to global warming, soil erosion is increasing in different regions. Therefore, this issue will require further investigation and the use of new tools.

View Article and Find Full Text PDF

Due to the small and irregular shapes of vegetable seeds, modeling them is challenging, and the imprecision of physical parameters hinders the performance of vegetable seeders, impeding simulation development. In this study, seeds of cucumber, pepper, and tomato were seen as examples. A 3D point cloud reconstruction method based on Structure-from-Motion Multi-View Stereo (SfM-MVS) was employed to accurately extract 3D models of small and irregularly shaped seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!