Deep Learning for Counting People from UWB Channel Impulse Response Signals.

Sensors (Basel)

School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea.

Published: August 2023

The use of higher frequency bands compared to other wireless communication protocols enhances the capability of accurately determining locations from ultra-wideband (UWB) signals. It can also be used to estimate the number of people in a room based on the waveform of the channel impulse response (CIR) from UWB transceivers. In this paper, we apply deep neural networks to UWB CIR signals for the purpose of estimating the number of people in a room. We especially focus on empirically investigating the various network architectures for classification from single UWB CIR data, as well as from various ensemble configurations. We present our processes for acquiring and preprocessing CIR data, our designs of the different network architectures and ensembles that were applied, and the comparative experimental evaluations. We demonstrate that deep neural networks can accurately classify the number of people within a Line of Sight (LoS), thereby achieving an 99% performance and efficiency with respect to both memory size and FLOPs (Floating Point Operations Per Second).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459188PMC
http://dx.doi.org/10.3390/s23167093DOI Listing

Publication Analysis

Top Keywords

number people
12
channel impulse
8
impulse response
8
people room
8
deep neural
8
neural networks
8
uwb cir
8
network architectures
8
cir data
8
uwb
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!