A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fire Detection and Notification Method in Ship Areas Using Deep Learning and Computer Vision Approaches. | LitMetric

Fire incidents occurring onboard ships cause significant consequences that result in substantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection of fires is essential for quick responses and powerful mitigation. The study in this research paper presents a fire detection technique based on YOLOv7 (You Only Look Once version 7), incorporating improved deep learning algorithms. The YOLOv7 architecture, with an improved E-ELAN (extended efficient layer aggregation network) as its backbone, serves as the basis of our fire detection system. Its enhanced feature fusion technique makes it superior to all its predecessors. To train the model, we collected 4622 images of various ship scenarios and performed data augmentation techniques such as rotation, horizontal and vertical flips, and scaling. Our model, through rigorous evaluation, showcases enhanced capabilities of fire recognition to improve maritime safety. The proposed strategy successfully achieves an accuracy of 93% in detecting fires to minimize catastrophic incidents. Objects having visual similarities to fire may lead to false prediction and detection by the model, but this can be controlled by expanding the dataset. However, our model can be utilized as a real-time fire detector in challenging environments and for small-object detection. Advancements in deep learning models hold the potential to enhance safety measures, and our proposed model in this paper exhibits this potential. Experimental results proved that the proposed method can be used successfully for the protection of ships and in monitoring fires in ship port areas. Finally, we compared the performance of our method with those of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458310PMC
http://dx.doi.org/10.3390/s23167078DOI Listing

Publication Analysis

Top Keywords

fire detection
12
deep learning
12
fire
8
detection
5
model
5
detection notification
4
notification method
4
method ship
4
ship areas
4
areas deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!