Organic solar cells (OSCs) have gained increasing attention. Among the various directions in OSCs, all-polymer solar cells (all-PSCs) have emerged as a highly promising and currently active research area due to their excellent film formation properties, mechanical properties, and thermal stabilities. However, most of the high-efficiency all-PSCs are processed from chloroform with an active layer thickness of ~100 nm. In order to meet the requirements for industrialization, a thicker active layer processed from low-vapor pressure solvents (preferentially a hydrocarbon solvent) is strongly desired. Herein, we employ toluene (a hydrocarbon solvent with a much higher boiling point than chloroform) and a method known as sequential processing (SqP) to mitigate the rapid decline in efficiency with increasing film thickness. We show that SqP enables a more favorable vertical phase segregation that leads to less trap-assisted recombination and enhanced charge extraction and lifetime than blend-cast devices at higher film thicknesses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459458PMC
http://dx.doi.org/10.3390/polym15163462DOI Listing

Publication Analysis

Top Keywords

solar cells
12
hydrocarbon solvent
12
active layer
12
all-polymer solar
8
cells sequentially
4
sequentially solution
4
solution processed
4
processed hydrocarbon
4
solvent thick
4
active
4

Similar Publications

The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.

View Article and Find Full Text PDF

Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells.

View Article and Find Full Text PDF

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

The present article focuses on the characterization of the new biocomposites of poly(butylene succinate) (PBS) with fillers of plant origin such as onion peels (OP) and durum wheat bran WB () subjected to composting and artificial aging. The susceptibility to fungal growth, cytotoxicity and antibacterial properties were also examined. The biodegradation of the samples was investigated under normalized conditions simulating an intensive aerobic composting process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!