Drug-loaded perfluorocarbon nanodroplets (NDs) can be activated non-invasively by focused ultrasound (FUS) and allow for precise drug-delivery. Anesthetic-loaded NDs and transcranial FUS have previously achieved targeted neuromodulation. To assess the clinical potential of anesthetic-loaded NDs, in depth physical characterization and investigation of storage strategies and triggered-activation is necessary. Pentobarbital-loaded decafluorobutane nanodroplets (PBNDs) with a Definity-derived lipid shell (237 nm; 4.08 × 10 particles/mL) were fabricated and assessed. Change in droplet stability, concentration, and drug-release efficacy were tested for PBNDs frozen at -80 °C over 4 weeks. PBND diameter and the polydispersity index of thawed droplets remained consistent up to 14 days frozen. Cryo-TEM images revealed NDs begin to lose circularity at 7 days, and by 14 days, perfluorocarbon dissolution and lipid fragmentation occurred. The level of acoustic response and drug release decreases through prolonged storage. PBNDs showed no hemolytic activity at clinically relevant concentrations and conditions. At increasing sonication pressures, liquid PBNDs vaporized into gas microbubbles, and acoustic activity at the second harmonic frequency (2 f) peaked at lower pressures than the subharmonic frequency (1/2 f). Definity-based PBNDs have been thoroughly characterized, cryo-TEM has been shown to be suitable to image the internal structure of volatile NDs, and PBNDs can be reliably stored at -80 °C for future use up to 7 days without significant degradation, loss of acoustic response, or reduction in ultrasound-triggered drug release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457791PMC
http://dx.doi.org/10.3390/pharmaceutics15082077DOI Listing

Publication Analysis

Top Keywords

physical characterization
8
potential anesthetic-loaded
8
anesthetic-loaded nds
8
-80 °c
8
acoustic response
8
drug release
8
pbnds
6
nds
5
characterization improve
4
improve scalability
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Objectives: This study was designed to characterize the prevalence, pattern of herbal use, and related factors among diabetic patients in Tabriz, Iran.

Methods: A descriptive cross-sectional study was carried out on 322 diabetic patients with random cluster sampling of specialized and subspecialized clinics in Tabriz, Iran. Binary logistic regression analysis was performed to evaluate the association between predictor variables (sociodemographic and disease-related characteristics and patient preference for treatment type) with herb use Interviews were conducted using a structured questionnaire from October 1, 2022, to April 23, 2023.

View Article and Find Full Text PDF

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

Exploring the relationship between trauma, mental health, and occupational performance in health science center students.

Front Public Health

December 2024

Occupational Therapy Department, College of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait.

Introduction: Attending university marks a pivotal yet stressful phase in students' lives, characterized by significant adjustments to a new environment that can impact mental, emotional, and physical well-being. The journey through the acceptance and admissions process into university introduces substantial challenges, academic performance and changes to daily life. Such challenges and corresponding conditions can be intensified for students entering university with prior traumatic experiences.

View Article and Find Full Text PDF

MYT1L syndrome is a newly recognized disorder characterized by intellectual disability, speech and motor delay, neuroendocrine disruptions, ADHD, and autism. In order to study this gene and its association with these phenotypes, our lab recently created a heterozygous mutant mouse inspired by a clinically relevant mutation. This model recapitulates several of the physical and neurologic abnormalities seen in humans with MYT1L syndrome, such as weight gain, microcephaly, and behavioral disruptions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!