The present study aimed to evaluate the effects of the foliar application of hydrogen peroxide on the attenuation of salt stress on the growth, photochemical efficiency, production and water use efficiency of 'All Big' bell pepper plants. The experiment was conducted under greenhouse conditions in Campina Grande, PB, Brazil. Treatments were distributed in a randomized block design, in a 5 × 5 factorial scheme, corresponding to five levels of electrical conductivity of irrigation water (0.8, 1.2, 2.0, 2.6 and 3.2 dS m) and five concentrations of hydrogen peroxide (0, 15, 30, 45 and 60 μM), with three replicates. Foliar application of hydrogen peroxide at concentration of 15 μM attenuated the deleterious effects of salt stress on photochemical efficiency, biomass accumulation and production components of bell pepper plants irrigated using water with an electrical conductivity of up to 3.2 dS m. Foliar spraying of hydrogen peroxide at a concentration of 60 μM intensified the effects of salt stress. The 'All Big' bell pepper was classified as moderately sensitive to salt stress, with an irrigation water salinity threshold of 1.43 dS m and a unit decrease of 8.25% above this salinity level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458158PMC
http://dx.doi.org/10.3390/plants12162981DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
20
salt stress
20
bell pepper
16
foliar application
8
application hydrogen
8
photochemical efficiency
8
'all big'
8
big' bell
8
pepper plants
8
electrical conductivity
8

Similar Publications

Passion fruit seed extract protects hydrogen peroxide-induced cell damage in human retinal pigment epithelium ARPE-19 cells.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.

View Article and Find Full Text PDF

Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice.

Nat Commun

January 2025

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.

View Article and Find Full Text PDF

Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.

View Article and Find Full Text PDF

Stability of complex biotherapeutics like monoclonal antibodies is paramount for their safe and efficacious use. Excipients are inactive ingredients that are added to the purified product so as to offer it a stable environment. Trehalose dihydrate is a non-reducing sugar that is commonly used as a stabilizing agent in biotherapeutic formulations under liquid and frozen states.

View Article and Find Full Text PDF

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!