A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect Analysis of Hydrogen Peroxide Using Hyperspectral Reflectance in Sorghum [ (L.) Moench] under Drought Stress. | LitMetric

Due to global climate change, adverse environments like drought in agricultural production are occurring frequently, increasing the need for research to ensure stable crop production. This study was conducted to determine the effect of artificial hydrogen peroxide treatment on sorghum growth to induce stress resistance in drought conditions. Hyperspectral analysis was performed to rapidly find out the effects of drought and hydrogen peroxide treatment to estimate the physiological parameters of plants related to drought and calculate the vegetation indices through PLS analysis based on hyperspectral data. The partial least squares (PLS) analysis collected chlorophyll fluorescence variables, photosynthetic parameters, leaf water potential, and hyperspectral reflectance during the stem elongation and booting stage. To find out the effect of hydrogen peroxide treatment in sorghum plants grown under 90% and 60% of field capacity in greenhouses, growth and hyperspectral reflectance were measured on the 10th and 20th days after foliar application of HO at 30 mM from 1st to 5th leaf stage. The PLS analysis shows that the maximum variable fluorescence of the dark-adapted leaves was the most predictable model with R = 0.76, and the estimation model suitability gradually increased with O (R = 0.51), J (R = 0.73), and P (R = 0.75) among OJIP parameters of chlorophyll fluorescence analysis. However, the estimation suitability of predictions for moisture-related traits, vapor pressure deficit (VPD, R = 0.18), and leaf water potential (R = 0.15) using hyperspectral data was low. The hyperspectral reflectance was 10% higher at 20 days after treatment (DAT) and 3% at 20 DAT than the non-treatment in the far red and infra-red light regions under drought conditions. Vogelmann red edge index (VOG REI) 1, chlorophyll index red edge (CIR), and red-edge normalized difference vegetation index (RE-NDVI) efficiently reflected moisture stress among the vegetation indices. Photochemical reflectance index (PRI) can be used as an indicator for early diagnosis of drought stress because hydrogen peroxide treatment showed higher values than untreated in the early stages of drought damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459410PMC
http://dx.doi.org/10.3390/plants12162958DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
20
hyperspectral reflectance
16
peroxide treatment
16
pls analysis
12
drought
8
drought stress
8
treatment sorghum
8
drought conditions
8
vegetation indices
8
hyperspectral data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!