as an In Vivo Model for the Discovery and Development of Natural Plant-Based Antimicrobial Compounds.

Pharmaceuticals (Basel)

Department of Microbiology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia.

Published: July 2023

Antimicrobial resistance (AMR) due to the prevalence of multidrug-resistant (MDR) pathogens is rapidly increasing worldwide, and the identification of new antimicrobial agents with innovative mechanisms of action is urgently required. Medicinal plants that have been utilised for centuries with minor side effects may hold great promise as sources of effective antimicrobial products. The free-living nematode is an excellent live infection model for the discovery and development of new antimicrobial compounds. However, while has widely been utilised to explore the effectiveness and toxicity of synthetic antibiotics, it has not been used to a comparable extent for the analysis of natural products. By screening the PubMed database, we identified articles reporting the use of the model for the identification of natural products endowed with antibacterial and antifungal potential, and we critically analysed their results. The studies discussed here provide important information regarding "in vivo" antimicrobial effectiveness and toxicity of natural products, as evaluated prior to testing in conventional vertebrate models, thereby supporting the relevance of as a highly proficient model for their identification and functional assessment. However, their critical evaluation also underlines that the characterisation of active phytochemicals and of their chemical structure, and the unravelling of their mechanisms of action represent decisive challenges for future research in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458014PMC
http://dx.doi.org/10.3390/ph16081070DOI Listing

Publication Analysis

Top Keywords

natural products
12
model discovery
8
discovery development
8
antimicrobial compounds
8
mechanisms action
8
effectiveness toxicity
8
model identification
8
antimicrobial
6
vivo model
4
natural
4

Similar Publications

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.

Appl Biochem Biotechnol

January 2025

Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.

In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases.

View Article and Find Full Text PDF

Delay discounting predicts COVID-19 vaccine booster willingness.

Cogn Res Princ Implic

January 2025

Department of Psychology and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada.

Developing ways to predict and encourage vaccine booster uptake are necessary for durable immunity responses. In a multi-nation sample, recruited in June-August 2021, we assessed delay discounting (one's tendency to choose smaller immediate rewards over larger future rewards), COVID-19 vaccination status, demographics, and distress level. Participants who reported being vaccinated were invited back one year later (n = 2547) to report their willingness to receive a booster dose, along with reasons for their decision.

View Article and Find Full Text PDF

Context: The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from Artocarpus communis seed hexane fraction and their possible mechanism of action against metabolic syndrome.

View Article and Find Full Text PDF

Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!