Coarse wavelength division multiplexing (CWDM)-targeted novel silicon (Si)-nanowire-type polarization-diversified optical demultiplexers were numerically analyzed and experimentally verified. The optical demultiplexer comprised a hybrid mode conversion-type polarization splitter rotator (PSR) and a delayed Mach-Zehnder interferometric demultiplexer. Si-nanowire-based devices were fabricated using a commercially available Si photonics foundry process, exhibiting nearly identical spectral responses regardless of the polarization states of the input signals under the PSR. The experiment demonstrated a low insertion loss of 1.0 dB and a polarization-dependent loss of 1.0 dB, effectively suppressing spectral crosstalk from other channels by less than -15 dB. Furthermore, a TM-mode rejection-filter-integrated optical demultiplexer was designed and experimentally validated to mitigate unwanted TM-mode-related polarization crosstalk that arose from the PSR. It exhibited an improved polarization crosstalk rejection efficiency of -25 dB to -50 dB within the whole CWDM spectral range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459358PMC
http://dx.doi.org/10.3390/nano13162382DOI Listing

Publication Analysis

Top Keywords

polarization crosstalk
12
optical demultiplexer
8
polarization
5
silicon-nanowire-type polarization-diversified
4
polarization-diversified cwdm
4
demultiplexer
4
cwdm demultiplexer
4
demultiplexer low
4
low polarization
4
crosstalk
4

Similar Publications

Hepatocellular carcinoma hosts cholinergic neural cells and tumoral hepatocytes harboring targetable muscarinic receptors.

JHEP Rep

January 2025

Hepatitis Viruses and Pathobiology of Chronic Liver Diseases - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon - Hepatology Institute of Lyon F - IHU EVEREST, University of Lyon 1, ISPB, France, CNRS UMR5286, Centre Léon, Lyon, France.

Background & Aims: Owing to unexplained interpatient variation and treatment failure in hepatocellular carcinoma (HCC), novel therapeutic approaches remain an urgent clinical need. Hepatic neurons, belonging to the autonomic nervous system (ANS), mediate liver/whole body crosstalk. Pathological innervation of the ANS has been identified in cancer, nurturing tumor stroma and conferring stronger carcinogenic properties.

View Article and Find Full Text PDF

Cancer is characterized by unregulated cell proliferation, enabling it to invade and spread to different organs and tissues in the body. Cancer progression is intricately influenced by the complex dynamics within the tumor microenvironment (TME). The TME is a composite and dynamic network comprising cancer cells and various immune cells, including tumor-associated macrophages.

View Article and Find Full Text PDF

Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).

View Article and Find Full Text PDF

Heart failure (HF) is a complex and debilitating condition characterized by the heart's inability to pump blood effectively, leading to significant morbidity and mortality. The abnormality of immune response is a key factor in the progression of HF, contributing to adverse cardiac remodeling and dysfunction. Exosomal microRNAs (miRNAs) play a pivotal role in regulating gene expression and cellular function, which are integral to the crosstalk between cardiac and immune cells, influencing immune cell functions, such as macrophage polarization, T cell activity, and cytokine production, thereby modulating various pathological processes of HF, such as inflammation, fibrosis, and cardiac dysfunction.

View Article and Find Full Text PDF

ALDH1L2 drives HCC progression through TAM polarization.

JHEP Rep

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background & Aims: Dysregulation of one-carbon metabolism is considered an early hallmark of mitochondrial dysfunction and cancer metabolism. ALDH1L2 belongs to the aldehyde dehydrogenase family and plays an important role in tumor progression. However, little is known about the precise role and underlying mechanisms of ALDH1L2 in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!