All-inorganic perovskite quantum dots (CsPbX QDs) (X = Cl, Br, I) have the advantages of adjustable emission position, narrow emission spectrum, high fluorescence quantum efficiency (PLQY), easy preparation, and elevated defect tolerance; therefore, they are widely used in optoelectronic devices, such as solar cells, light-emitting diodes, and lasers. However, their stability still constrains their development due to their intrinsic crystal structure, ionic exchange of surface ligands, and exceptional sensitivity to environmental factors, such as light, water, oxygen, and heat. Therefore, in this paper, we investigate the stability improvement of CsPbX QDs and apply fabricated high-efficiency, stable perovskite QDs to solar cells to improve the performance of the cells further. In this paper, we focus on CsPbBr QDs with intrinsic extreme stability and optimize CsPbBr QDs using strategies, such as Mn doping, ligand regulation, and polymer encapsulation, which can improve optical properties while ensuring their stability. The test results show that the above five methods can improve the strength and luminescence performance of QDs, with the best stability achieved when PMMA encapsulates QDs with a ratio of PMMA = 2:1 and PLQY increases from 60.2% to 90.1%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457982 | PMC |
http://dx.doi.org/10.3390/nano13162372 | DOI Listing |
ACS Nano
January 2025
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange.
View Article and Find Full Text PDFDalton Trans
December 2024
College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing (AISSM), National Cheng Kung University, No. 1, University Road, Tainan City, 70101, Taiwan.
As the demand for the neuromorphic vision system in image recognition experiences rapid growth, it is imperative to develop advanced architectures capable of processing perceived data proximal to sensory terminals. This approach aims to reduce data movement between sensory and computing units, minimizing the need for data transfer and conversion at the sensor-processor interface. Here, an optical neuromorphic synaptic (ONS) device is demonstrated by homogeneously integrating optical-sensing and synaptic functionalities into a unified material platform, constructed exclusively by all-inorganic perovskite CsPbBr quantum dots (QDs).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
Single-particle photoluminescence measurements have been extensively utilized to investigate the charge carrier dynamics in quantum dots (QDs). Among these techniques, single dot blinking studies are effective for probing relatively slower processes with timescales >10 ms, whereas fluorescence correlation spectroscopy (FCS) studies are suited for recording faster processes with timescales typically <1 ms. In this study, we utilized scanning FCS (sFCS) to bridge the ms gap, thereby enabling the tracking of carrier dynamics across an extended temporal window ranging from μs to subsecond.
View Article and Find Full Text PDFACS Sens
November 2024
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
The design of high-performance and low-power formaldehyde (HCHO) gas sensors is of great interest to researchers for environmental monitoring and human health. Herein, InO/CsPbBr composites were successfully synthesized through an electrospinning and self-assembly approach, and their ultraviolet-activated (UV-activated) HCHO gas-sensing properties were investigated. The measurement data indicated that the InO/CsPbBr sensor possesses an excellent selectivity toward HCHO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!