Silicon nitride films are widely used as the charge storage layer of charge trap flash (CTF) devices due to their high charge trap densities. The nature of the charge trapping sites in these materials responsible for the memory effect in CTF devices is still unclear. Most prominently, the Si dangling bond or -center has been identified as an amphoteric trap center. Nevertheless, experiments have shown that these dangling bonds only make up a small portion of the total density of electrical active defects, motivating the search for other charge trapping sites. Here, we use a machine-learned force field to create model structures of amorphous Si3N4 by simulating a melt-and-quench procedure with a molecular dynamics algorithm. Subsequently, we employ density functional theory in conjunction with a hybrid functional to investigate the structural properties and electronic states of our model structures. We show that electrons and holes can localize near over- and under-coordinated atoms, thereby introducing defect states in the band gap after structural relaxation. We analyze these trapping sites within a nonradiative multi-phonon model by calculating relaxation energies and thermodynamic charge transition levels. The resulting defect parameters are used to model the potential energy curves of the defect systems in different charge states and to extract the classical energy barrier for charge transfer. The high energy barriers for charge emission compared to the vanishing barriers for charge capture at the defect sites show that intrinsic electron traps can contribute to the memory effect in charge trap flash devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460034PMC
http://dx.doi.org/10.3390/nano13162286DOI Listing

Publication Analysis

Top Keywords

charge trap
12
trapping sites
12
charge
11
silicon nitride
8
trap flash
8
ctf devices
8
charge trapping
8
model structures
8
barriers charge
8
over- undercoordinated
4

Similar Publications

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Epoxy resin (EP) is an outstanding polymer material known for its low cost, ease of preparation, excellent electrical insulation properties, mechanical strength, and chemical stability. It is widely used in high- and ultra-high-voltage power transmission and transformation equipment. However, as voltage levels continue to increase, EP materials are gradually failing to meet the performance demands of operational environments.

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) film, with high energy density and excellent mechanical properties, has drawn attention as an energy storage device. However, conduction loss in PVDF under high electric fields hinders improvement in efficiency due to electrode-limited and bulk-limited conduction. Well-aligned multilayer interfaces of two-dimensional (2D) nanocoatings can block charge injection, reducing electrode-limited conduction loss in dielectric polymers.

View Article and Find Full Text PDF

Schottky Defects Suppress Nonradiative Recombination in CHNHPbI through Charge Localization.

J Phys Chem Lett

December 2024

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.

View Article and Find Full Text PDF

Efficient Output and Stability Triboelectric Materials Enabled by High Deep Trap Density.

Nano Lett

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

With the increasing global focus on sustainable materials, paper is favored for its biodegradability and low cost. Their integration with triboelectric nanogenerators (TENGs) establishes broad prospects for self-powered, paper-based triboelectric materials. However, these materials inherently lack efficient charge storage structures, leading to rapid charge dissipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!