It is unknown if the abnormal acylcarnitine (AC) profile observed early after discharge of a prolonged stay in an intensive care unit (ICU) would persist over time. This prospective observational study aimed to describe the mid-term AC profile evolution in survivors of a prolonged ICU stay (≥7 days). Adults enrolled in our post-ICU follow-up program and who attended the consultation 3 months (M3) after discharge were included. Serum AC concentrations were assessed within 7 days following ICU discharge (T0) and at M3. A total of 64 survivors were analyzed after an ICU stay of 15 (9-24) days. Free carnitine (C0) concentration decreased from 45.89 (35.80-127.5) to 28.73 (20.31-38.93) µmol/L ( < 0.001). C0 deficiency was not observed at T0 but in 7/64 (11%) survivors at M3. The total AC/C0 ratio (normal ≤ 0.4) was 0.33 (0.24-0.39) at T0 and reached 0.39 (0.30-0.56) at M3 ( = 0.001). A ratio >0.4 was observed in 16/64 (25%) at T0 and in 32/64 (50%) at M3 ( = 0.006). The short-chain ACs decreased from 1.310 (0.927-1.829) at T0 to 0.945 (0.709-1.127) µmol/L at M3 ( < 0.001). In parallel, the urea/creatinine ratio and the Sarcopenic Index, respectively, decreased and increased between T0 and M3. This AC profile is suspected to signal a mitochondrial dysfunction and was, especially for short-chain ACs, a marker of protein catabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458357PMC
http://dx.doi.org/10.3390/nu15163595DOI Listing

Publication Analysis

Top Keywords

acylcarnitine profile
8
icu stay
8
µmol/l 0001
8
short-chain acs
8
mid-term evolution
4
evolution serum
4
serum acylcarnitine
4
profile
4
profile critically
4
critically ill
4

Similar Publications

Background: Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective.

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) causes systemic changes that contribute to delayed cerebral ischemia (DCI) and morbidity. Circulating metabolites reflecting underlying pathophysiological mechanisms warrant investigation as biomarker candidates.

Methods: Blood samples, prospectively collected within 24 hours (T1) of admission and 7-days (T2) post ictus, from patients with acute aSAH from two tertiary care centers were retrospectively analyzed.

View Article and Find Full Text PDF

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Aim: Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle.

Methods: We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling).

View Article and Find Full Text PDF

The associations between prenatal plastic phthalate exposure and lipid acylcarnitine levels in humans and mice.

Reprod Toxicol

January 2025

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia. Electronic address:

Phthalates are ubiquitous environmental pollutants known for their endocrine-disrupting properties, particularly during critical periods such as pregnancy and early childhood. Phthalates alter lipid metabolism, but the role of prenatal exposure on the offspring lipidome is less understood. In particular, we focused on long chain acylcarnitines - intermediates of fatty acid oxidation that serve as potential biomarkers of mitochondrial function and energy metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!