Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Linn plays an important role in treatment because it contains active compounds that are proven to have a variety of activities, including cytotoxicity on various cancer cells. The objective of this study is to isolate and identify the cytotoxic compounds in the ethyl acetate fraction of , observe cell cycle inhibition and induction of apoptosis in vitro, and carry out molecular studies using in silico studies. A new diterpene compound was isolated from the ethyl acetate fraction of L. of Indonesian origin. Chromatographic methods were used to isolate the compound, spectroscopic methods were used to elucidate its structure, and these data were compared with those reported in the literature. The compound was tested for its cytotoxic activity against two breast cancer cells (MCF-7 and T47D). The results of the isolated compound showed a cytotoxic effect on MCF-7 and T47D breast cancer cells at IC 70.56 ± 1.54 and <3.125 ± 0.43 µg/mL, respectively. The compound inhibited the growth of MCF-7 and T47D breast cancer cells and the accumulation of cells in the G1 phases, and it induced apoptosis. Based on a spectroscopic analysis, the isolated compound was identified as 2α-hydroxyscopadiol, which is a new diterpenoid. A docking study revealed that the isolate's hydroxyl groups are essential for interacting with crucial residues on the active sites of the ER and PR and caspase-9. The isolate inhibits ER and PR activity with binding energies of -8.2 kcal/mol and -7.3 kcal/mol, respectively. In addition, the isolate was also able to induce apoptosis through the activation of the caspase-9 pathway with an affinity of -9.0 kcal/mol. In conclusion, the isolated compound from demonstrated anticancer activity based on in vitro and in silico studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459870 | PMC |
http://dx.doi.org/10.3390/molecules28165960 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!