Hydrogen-Bonding-Driven Nontraditional Photoluminescence of a -Enamino Ester.

Molecules

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Published: August 2023

Nontraditional luminogens (NTLs) do not contain any conventional chromophores (large π-conjugated structures), but they do show intrinsic photoluminescence. To achieve photoluminescence from NTLs, it is necessary to increase the extent of through-space conjugation (TSC) and suppress nonradiative decay. Incorporating strong physical interactions such as hydrogen bonding is an effective strategy to achieve this. In this work, we carried out comparative studies on the photoluminescence behaviors of two -enamino esters with similar chemical structures, namely methyl 3-aminocrotonate (MAC) and methyl ()-3-(1-pyrrolidinyl)-2-butenoate (MPB). MAC crystal emits blue fluorescence under UV irradiation. The critical cluster concentration of MAC in ethanol solutions was determined by studying the relationship between the photoluminescence intensity (UV-visible absorbance) and concentration. Furthermore, MAC exhibits solvatochromism, and its emission wavelength redshifts as the solvent polarity increases. On the contrary, MPB is non-emissive in both solid state and solutions. Crystal structures and theoretical calculation prove that strong inter- and intramolecular hydrogen bonds lead to the formation of large amounts of TSC of MAC molecules in aggregated states. No hydrogen bonds and thus no effective TSC can be formed between or within MPB molecules, and this is the reason for its non-emissive nature. This work provides a deeper understanding of how hydrogen bonding contributes to the luminescence of NTLs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458074PMC
http://dx.doi.org/10.3390/molecules28165950DOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
8
concentration mac
8
hydrogen bonds
8
photoluminescence
5
mac
5
hydrogen-bonding-driven nontraditional
4
nontraditional photoluminescence
4
photoluminescence -enamino
4
-enamino ester
4
ester nontraditional
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

Efficient adsorption behavior of Fe-based ternary magnetic LDHs for naphthalene acetic acid: Role of Fe element.

Environ Res

January 2025

School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

Naphthalene acetic acid (NAA) is an auxin plant growth regulator (PGR) and widely used to regulate the growth process of plants. As excessive NAA enter the environment, it damages the ecological environment and endangers human life and health. Layered bimetallic hydroxides (LDHs) are widely used for the adsorption of pollutants due to their large surface area and excellent structural properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!