FinFET 6T-SRAM All-Digital Compute-in-Memory for Artificial Intelligence Applications: An Overview and Analysis.

Micromachines (Basel)

Department of Electronics, Carleton University, 1125 Colonel Bay Drive, Ottawa, ON K1S 5B6, Canada.

Published: July 2023

Artificial intelligence (AI) has revolutionized present-day life through automation and independent decision-making capabilities. For AI hardware implementations, the 6T-SRAM cell is a suitable candidate due to its performance edge over its counterparts. However, modern AI hardware such as neural networks (NNs) access off-chip data quite often, degrading the overall system performance. Compute-in-memory (CIM) reduces off-chip data access transactions. One CIM approach is based on the mixed-signal domain, but it suffers from limited bit precision and signal margin issues. An alternate emerging approach uses the all-digital signal domain that provides better signal margins and bit precision; however, it will be at the expense of hardware overhead. We have analyzed digital signal domain CIM silicon-verified 6T-SRAM CIM solutions, after classifying them as SRAM-based accelerators, i.e., near-memory computing (NMC), and custom SRAM-based CIM, i.e., in-memory-computing (IMC). We have focused on multiply and accumulate (MAC) as the most frequent operation in convolution neural networks (CNNs) and compared state-of-the-art implementations. Neural networks with low weight precision, i.e., <12b, show lower accuracy but higher power efficiency. An input precision of 8b achieves implementation requirements. The maximum performance reported is 7.49 TOPS at 330 MHz, while custom SRAM-based performance has shown a maximum of 5.6 GOPS at 100 MHz. The second part of this article analyzes the FinFET 6T-SRAM as one of the critical components in determining overall performance of an AI computing system. We have investigated the FinFET 6T-SRAM cell performance and limitations as dictated by the FinFET technology-specific parameters, such as sizing, threshold voltage (V), supply voltage (V), and process and environmental variations. The HD FinFET 6T-SRAM cell shows 32% lower read access time and 1.09 times better leakage power as compared with the HC cell configuration. The minimum achievable supply voltage is 600 mV without utilization of any read- or write-assist scheme for all cell configurations, while temperature variations show noise margin deviation of up to 22% of the nominal values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456776PMC
http://dx.doi.org/10.3390/mi14081535DOI Listing

Publication Analysis

Top Keywords

neural networks
12
artificial intelligence
8
off-chip data
8
bit precision
8
signal domain
8
cim
5
finfet 6t-sram
4
6t-sram all-digital
4
all-digital compute-in-memory
4
compute-in-memory artificial
4

Similar Publications

Recognizing drivers' sleep onset by detecting slow eye movement using a parallel multimodal one-dimensional convolutional neural network.

Comput Methods Biomech Biomed Engin

January 2025

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.

Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.

View Article and Find Full Text PDF

Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.

View Article and Find Full Text PDF

Accurate building segmentation has become critical in various fields such as urban management, urban planning, mapping, and navigation. With the increasing diversity in the number, size, and shape of buildings, convolutional neural networks have been used to segment and extract buildings from such images, resulting in increased efficiency and utilization of image features. We propose a building semantic segmentation method to improve the traditional Unet convolutional neural network by integrating attention mechanism and boundary detection.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Animals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!