Fiber-to-Chip Three-Dimensional Silicon-on-Insulator Edge Couplers with High Efficiency and Tolerance.

Micromachines (Basel)

The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.

Published: July 2023

The edge coupler is an indispensable optical device for connecting an external fiber and on-chip waveguide. The coupling efficiency of the edge coupler affects the effective integration of optical circuits. In this study, three-dimensional (3D) edge couplers with high efficiency and tolerance are proposed. The high coupling efficiency of the 3D edge couplers is verified by theoretical calculations. Three couplers are fabricated on a thick-silicon platform via 3D grayscale lithography. At the 1550 nm band, the fiber-to-chip experimental data show that the maximum coupling efficiencies of the three edge couplers are 0.70 dB and 1.34 dB, 0.80 dB and 1.60 dB, and 1.00 dB and 1.14 dB for the TE and TM modes, respectively. At the 1550 nm band, misalignment tolerances measurement data reveal 0.8 dB/0.9 dB tolerance of ±5 μm in the horizontal direction, and 1.7 dB/1.0 dB tolerance of ±2 μm in the vertical direction for TE/TM mode. This study provides a new idea for the design of 3D edge couplers and demonstrates significant superiority in research and industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456284PMC
http://dx.doi.org/10.3390/mi14081500DOI Listing

Publication Analysis

Top Keywords

edge couplers
20
couplers high
8
high efficiency
8
efficiency tolerance
8
edge coupler
8
coupling efficiency
8
efficiency edge
8
1550 band
8
edge
7
couplers
6

Similar Publications

We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Asymmetric bi-level dual-core mode converter for high-efficiency and polarization-insensitive O-band fiber-chip edge coupling: breaking the critical size limitation.

Nanophotonics

September 2024

State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Center for Optical & Electromagnetic Research, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.

Efficient coupling between optical fibers and on-chip photonic waveguides has long been a crucial issue for photonic chips used in various applications. Edge couplers (ECs) based on an inverse taper have seen widespread utilization due to their intrinsic broadband operation. However, it still remains a big challenge to realize polarization-insensitive low-loss ECs working at the O-band (1,260-1,360 nm), mainly due to the strong polarization dependence of the mode coupling/conversion and the difficulty to fabricate the taper tip with an ultra-small feature size.

View Article and Find Full Text PDF

We simulate the optical properties of polymer optical waveguides with different refractive index profiles in their cores as coupling components (edge couplers) between single-mode fiber and SiOx waveguides. In this paper, we focus on the single-mode operation of graded-index (GI) core polymer waveguides, for which we previously demonstrated low propagation loss under multimode operation. We design the optimum core structure (size and index contrast) for different refractive index profiles, and then demonstrate the unique optical properties of GI waveguides contributing to the low optical loss compared to the step-index counterparts, in particular, mode field diameter variation and taper angle tolerance.

View Article and Find Full Text PDF

High-performance silicon-based edge couplers for interfacing with standard single-mode fibers encounter significant challenges due to limitations imposed by the minimum fabrication width. Here, we propose a silicon nitride-assisted double-etched O-band silicon edge coupler with a minimum width of 180 nm. Notably, the polarization splitting function naturally integrates into this edge coupler.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!