The creep stress exponent is commonly employed to characterize the deformation mechanism during the steady-state creep stage, serving as an indicator of creep behavior. The creep phenomenon of high melting point metallic materials is not obvious at room temperature. However, the nanoindentation method proves suitable for investigating the creep properties of metallic materials under such conditions. Consequently, this paper places emphasis on measuring the creep stress exponent of TC17 titanium alloy at room temperature using the load preservation stage of the nanoindentation method with a constant loading rate. In order to investigate the effects of loading rate and maximum load on the experimental results, different loading rates were applied to the diamond Berkovich indenter to reach different maximum loads. The indenter was held under the maximum load for a duration of 360 s, and the relationship between the indentation strain rate and indentation stress during the holding process was used to obtain the creep stress exponent of the material at room temperature. The findings indicate that within the loading rate range of 1.25 to 15 mN/s and maximum load range of 50 to 300 mN, the influence on the experimental results is insignificant. Ultimately, the distribution range of the creep stress exponent for TC17 titanium alloy at room temperature was measured to be 8.524-8.687.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456297PMC
http://dx.doi.org/10.3390/ma16165702DOI Listing

Publication Analysis

Top Keywords

creep stress
20
stress exponent
20
room temperature
20
exponent tc17
12
tc17 titanium
12
titanium alloy
12
nanoindentation method
12
loading rate
12
maximum load
12
creep
8

Similar Publications

The long-term safety and durability of anchor systems are the focus of slope maintenance management and sustainable operation. This study presents the observed temperature, humidity, and anchor bolt stress at varying depths from four-year remote real-time monitoring of the selected loess highway cut-slope. The potential correlation between slope hydrothermal environment and anchor stress is analyzed.

View Article and Find Full Text PDF

Phosphogypsum is the main industrial solid waste from wet process phosphoric acid production, which has significant potential for environmental sustainability and engineering applications when modified. In order to explore the mechanical properties of modified phosphogypsum (MG) in different loading environments, uniaxial compression tests were conducted at four loading rates: 0.03, 0.

View Article and Find Full Text PDF

This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties.

View Article and Find Full Text PDF

The study of dredged fill in Guangdong (GD), China, is of great significance for reclamation projects. Currently, there are relatively few studies on dredged fill in Guangdong, and there are many differences in the engineering characteristics of dredged fill foundations formed through land reclamation and natural foundations. In order to have a more comprehensive understanding of the physico-mechanical properties of blowing fill in the coastal area of GD and to understand the effect of its long-term creep row on the long-term settlement and deformation of buildings, the material properties, microstructure, elemental composition, triaxial shear properties, and triaxial creep properties of dredged fill in Guangdong were studied and analyzed through indoor geotechnical tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and conventional triaxial shear tests and triaxial creep tests.

View Article and Find Full Text PDF

The microstructure and residual mechanical properties of several groups of T92/Super304H dissimilar steel welded joints (hereinafter referred to as welded joints) in service for 70,000~85,000 h were analyzed. The results show that the early service history of the welded joint results in the polygonization of the martensite lath and the coarsening of the precipitated phase on the side of T92 steel. In the further creep process, the cavities nucleate along the precipitated phase interface and the triple junction grain boundary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!